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Summary: axial B field impacts hohlraum rad-
hydro and hot electrons 

• Axial field of 70 Tesla: goal for NIF: L. J. Perkins, IFSA talk Thurs 2:50pm 

D. J. Strozzi et al., Journ. Plasma Physics (submitted), arxiv.org/abs/1508.00803 

No B 

Bz0 = 70 T 

Raises temperature, esp. near wall 
e- temperature: with B - without B  [keV] 

Improves inner beam propagation: 
Increased equator x-ray drive 

Hot electrons magnetized 
in fill gas: guided to or 
away from capsule  

Z source  

= -0.2 cm 

Z source  

= -0.25 cm 

Hot e- energy 
deposition 
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Hydra MHD model: simple Ohm’s law, reduced 
heat conduction across B the main effect 
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Single-fluid, quasi-neutral, “Ohmic”: no e- inertia or displacement current 
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Ohm’s law: inertia-less e- momentum equation: 

Full Braginskii 1965  

Used in this work 

Electron energy equation: 
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Blue: how MHD / B field 
affect matter 

Reduced conduction  
perp. to B 

Ohmic 
heating 

JxB force / magnetic pressure 
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e- heat conduction perpendicular to B strongly 
suppressed in underdense low-Z fill for B > 1 T 
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Reduced perpendicular heat conduction: 
• Increases electron temperature 
• Improves inner beam propagation 
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NIF shot N120321: low-foot pulse, CH ablator, 
DT ice layer 

Picket Peak power 

Time used for two-plasmon 
hot e- Zuma study 

Time used for direct-on-capsule and 
SRS hot e- Zuma studies 
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Increased Te: hotter fill and wall, less material in 
inner beam path near wall with 70 T axial field 

e- temperature [keV] ne/ncrit 

NIT shot N120321 
18 ns: early peak power 

No B 

Bz0 = 70 T 
Wider equator  
channel with B 

Less ne 

w/ B 

Higher Te 

w/ B, esp. 
on equator 

Material Region 

Each figure is a hohlraum 
quadrant with (top) and 
without (bottom) B field 
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Increased Te: with B field, Te is 0.5 – 1.5 keV 
hotter near wall, < 0.5 keV in rest of fill 

E- temperature difference at 18 ns: 
With B – without B  [keV] 

DTe =  

0.2 keV 
0.5 

keV 

0.5 keV 
1 keV 

Hohlraum 
wall 
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Inner beam propagation: B field reduces inner 
beam absorption in fill, less pancaked implosion 

NIF Shot N120321: 21.5 ns: end of pulse 
• Shell radius ~ 150 um 
• No B: shell oblate (pancaked) 
• With B: close to round, better inner-beam propagation 

No B 

Bz0 = 70 T 

Hohlraum 
axis 
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Hot electrons: ZUMA1 (D. J. Larson): Hybrid PIC 
code: kinetic hots, dense plasma background 

Run here in “Monte-Carlo” mode: 
• Hot electrons undergo collisional drag and angular scatter2 

• Lorentz force from time-independent B field;  no E field 

Drag (energy loss):  
~ 1/[e- energy] 
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1 D. J. Larson et al., APS-DPP 2010; D. J. Strozzi et al., Phys. Plasmas 2012 
2A. P. L. Robinson et al., Nuclear Fusion 2014 
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Hot electron test case: source directly incident on 
capsule 

N120321   18 ns: early peak power 

ne 

Energy deposited per volume 
E = 175 keV 

No angular scatter 

Yes angular scatter 

Unphysical test source: 
Mono-energetic, collimated 

hots beam through 

hots scatter 
In ablator 



LLNL-PRES-677397 

11 

Hot electron test case: E > 130 keV to reach DT, 
185 keV couple best 

130 keV to reach DT 

185 keV couple 
best to DT 
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Hot electron test case: preheat given by 150 to 
250 keV electrons 

Thot = 50 keV  
Juttner 

Peak ~ 175 keV (increases weakly with Thot) 

 “Gamow peak”: Energy to DT =  

coupling efficiency * hot e- energy spectrum 

Hots that dominate preheat: 
Must be modeled correctly 
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Adding 1 Tesla field strongly magnetizes hots in 
underdense fill, not in dense ablator 

Cyclotron period, B = 1 T 

Time for r.m.s. 90 deg. angular scatter 

B = 70 T 

CH,  1 g/cm3,  0.2 keV 

He,  0.96 mg/cm3, 1 keV 

preheat 
hots 
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Hot electrons: Picket with two-plasmon hot e- 
source in window: B field guides hots to capsule 

NIF shot N120321 @ 1 ns 

• Two-plasmon decay hot e- source: Thot = 80 keV, R=500 um, dN/dW = const. for vz > 0 

• Bz = 70 T (uniform): hot e-’s magnetized in fill, transported directly at capsule 

• Fraction of hot e- energy deposited in DT ice: no B: 2.2*10-3, with B: 0.026 (12x higher)  

• Still only ~20 mJ so OK? 

• Pre-heat concentrated along poles – may be shape issue 

• Preheat depends on hot e- production, tunable by picket pulse shape (e.g. low-power “toe”) 

Hot electron energy deposited 

No B 

Bz0 = 70 T 
Hot e-  
source 

region 

Intensity 
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B field lines roughly follow MHD frozen-in law: 
advected with conducting plasma 

N120321, 18 ns: early peak power 

• Bz0 = 70 T 
• Field increases where compressed between ablator and wall 
• Some field lines connect to capsule, some don’t 

 
SRS source:  
• Thot = 30 keV 
• Angle spectrum: dN/dW = exp[-((-27o)/10o)4] 

Critical field line: 
• Inside lines connect 

to capsule 
• Outside lines don’t SRS hot e- sources 

2 1 

3 
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Hot electrons: coupling to DT early in peak power 
is very sensitive to source location 

Coupled energy [J/mm3] per injected hot e- Joule 

Source No B Bz0 =  
70 T 

Bz0 /  
no B 

1 1.19E-4 1.26E-3 10.6 

2 1.37E-4 3.44E-6 0.025 

3 3.58E-4 2.89E-3 8.07 

Fraction of hot e- energy coupled to DT ice 

Z source  

= -0.25 cm 

Z source  

= -0.2 cm 

Z source  

= -0.4 cm 

1 2 

3 
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Conclusion: imposed B field may improve inner 
beam propagation, could help or hurt hot 
electron preheat 
Hydra MHD simulation of low-foot shot N120321, with 70 T initial axial field: 
• Cross-field electron heat conduction greatly reduced 
• Leads to hotter and less dense equator, better inner-beam propagation 
• May reduce inner-beam SRS 
 
Zuma studies of hot electron propagation: 
• Picket: two-plasmon source in window guided to capsule, energy coupled to DT 

12x higher 
• Peak power: SRS source confined to He fill, energy coupled to DT strongly 

depends on source location 
• Story may change if hot electrons made no field lines still connected to capsule 

 
Future work: 
• Many MHD terms presently neglected in Ohm’s law and e- energy equation 
• “Biermann” self-generated fields have significant effect in Hydra (D. Strozzi) and 

Lasnex (C. Thomas), numerics being investigated 
• Nernst effect may significantly affect imposed-field dynamics (A. Joglekar, PRL 

2014 and Anomalous Absorption 2015) 


