Design of Magnetized, Room-Temperature Capsule Implosions for NIF

48th Anomalous Absorption Conference

Bar Harbor, Maine

11 July 2018
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
“Warm”, Bigfoot-based platform: show capsule field compression and yield enhancement

<table>
<thead>
<tr>
<th>Biermann fields (self-generated)</th>
<th>Hohlraum</th>
<th>Capsule</th>
</tr>
</thead>
</table>
| Like Farmer PoP 2017¹ | • Hotter fill
• Nernst advection reduces B
• Modest effect on drive, shape | B < 20 T for symmetric x-ray drive
• Modest effect: yields ~ same |
| **Imposed field: axial 30 Tesla** | Like Strozzi JPP 2015²,³ | B ~ 5 kT: ~ frozen-in
• Gas-filled capsule yields up ~50%
• For range of gas densities |
| • Frozen-in law holds: B field compressed or rarified w/ plasma
• *Slightly* hotter fill | |

Main effect of B field: reduce e- heat conduction perpendicular to B: $\omega_{ce}\tau_{ei} > 1$
Magnetic pressure $<<$ matter pressure: $\beta >> 1$

HYDRA MHD simulations:
Imposed axial field, “Biermann battery” fields, Nernst advection

¹ W. A. Farmer et al., Phys. Plasmas 2017
² D. J. Strozzi et al., J. Plasma Phys. 2015
³ L. J. Perkins et al., LLNL LDRD final report
“Bigfoot”1 platform: starting point for warm magnetized design

“Bigfoot” campaign on NIF
- Robust hotspot: High \(\rho \cdot R \), high velocity
 - Price: high adiabat, lower convergence
- Shock overtaking in ablator
- HDC capsule: short pulse, smooth capsules
- Simple hohlraum: low gas fill, low LPI
- Highest yield on NIF

Equivalent DT yield: agrees with Lasnex
13-15 MeV neutrons from DD, D\textsubscript{3}He, ...

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Figure courtesy C. Thomas}
\end{figure}

1 C. Thomas, APS-DPP invited talk, 2016

convergence ~ 21
Why Bigfoot for warm magnetized design?

- Don’t re-invent wheel
- Nice features: predictable, tunable, low LPI
- Not so nice to be irrelevant!
 - Enough convergence to amplify B field, reduce e- conduction
 - Connection to existing, high-yield cryo platform
- Vary convergence via capsule gas density

N161204: bigfoot NIF shot
- “Subscale” target: less taxing on laser:
 - 1.1 MJ, 340 TW
- Low hohlraum gas fill density: 0.3 mg/cc He4
- Symcap: gas-filled capsule: D[30%]-He3[70%]
 - 6.5 mg/cc
 - no DT ice layer
- HDC capsule, W dopant
- Au hohlraum
HYDRA MHD model: Full single-fluid Braginskii

Bulk momentum
\[
\rho \frac{D\vec{v}}{Dt} = -\nabla p + \vec{J} \times \vec{B}
\]

Magnetic force: pressure + tension
\[
\vec{J} \times \vec{B} = (B\hat{\beta} - 1) \cdot \nabla \left(\frac{B^2}{2\mu_0} \right) + \frac{B^2}{\mu_0} \hat{\beta} \cdot \nabla \hat{\beta}
\]

Maxwell
\[
\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \\
\vec{J} = \mu_0^{-1} \nabla \times \vec{B}
\]

Ohm’s law: Generalized
\[
\vec{E} = -\vec{v} \times \vec{B} + \frac{1}{n_ee} \vec{J} \times \vec{B} - \frac{\nabla p_e}{n_ee} + \eta \vec{J} - e^{-1} \hat{\beta} \cdot \nabla T_e
\]
- Advection / induction term
- Hall term
- Biermann battery
- Resistivity
- Thermal force
- Collisional

Ohm’s law: This talk
\[
\vec{E} = -\vec{v} \times \vec{B} + \eta \vec{J} - \frac{\nabla p_e}{n_ee} - e^{-1} \hat{\beta} \cdot \nabla T_e
\]
- Always
- Biermann
- Nernst: advect B to lower T_e
- No Righi-Leduc in energy eq.

- Plus analogs in electron energy equation
- No nonlocal limiting of Nernst: Brodrick, Sherlock
→ Biermann fields, no imposed

Imposed 30 T axial field

Varying capsule gas density
HYDRA methodology

- 2D R-Z axisymmetric
- "HyPyD": Pythonic framework: J. Koning, J. Salmonson
- Electron heat flux limit $f = 0.15$ (high)
- X-rays on capsule artificially symmetrized

Without hand tuning

- Sim. bangtime slightly early ~ 60 ps
- Sim. yield 25% above measured
- Biermann fields: little effect

Neutron yield

Sim. bangtime slightly early ~ 60 ps

Neutron burn rate

Sim. BT ~ 60 ps

Expt’l BT ~ 60 ps
Hohlraum map legend

radius

r>0:
run 1

r<0:
run 2

Au wall (dense, cold)

Au bubble (hot, low-dens)

One-sided in z

z [vertical in NIF chamber]
Biermann fields increase T_e, Nernst advection reduces the effect

Like Farmer PoP 2017

T_e [keV]

4.25 ns: early peak power

no MHD

Biermann

no MHD

Biermann + Nernst

Nernst:
- Adveacts B in to cold Au wall
- “Erases” much of Biermann field

|B| [T]

Au bubble

LEH

no Nernst

Nernst
Biermann fields, no imposed

→ Imposed 30 T axial field

Varying capsule gas density
Imposed $B_{z0} = 30$ T: yield increase $\sim 50\%$

Neutron yield

- No MHD
- $B_0=0$ Bier+Ner
- $B_0=30T$ J
- $B_0=30T$ Bier+Ner

Neutron production rate

- No MHD
- $B_0=0$ Bier+Ner
- $B_0=30T$ J
- $B_0=30T$ Bier+Ner

Imposed B runs: numerical issues at end

Layered-DT vs. DHe3-gas capsules
- Yield increased mainly by reduced e- conduction
- Not enough alpha’s to matter
Imposed $B_{z0} = 30$ T: field “adds” with Biermann in bubble / LEH

$|B| [T] @ 4.25$ ns: early peak power

No imposed vs. $B_{z0} = 30$ T

- Imposed-field dynamics unchanged by Biermann or Nernst
- Biermann fields unchanged by imposed – at least by eye
Imposed $B_{z0} = 30\ T$: effect on hohlraum fill vs. Biermann fields

E = vxB + eta*J

D Montgomery et al., PoP 2015: T_e increase on Omega gas hohlraums

Why small effect from B_{z0}?
- B inside Au to increase T_e
- Biermann yes, imposed no

- **Imposed B_{z0}**
 - Hall parameter > 1 in fill: not small
 - Reduced B in Au bubble: Frozen-in expansion
 - B in R-Z plane: heat flow reduced in 1 direction

- **Biermann field**
 - Azimuthal \rightarrow 2 directions reduced

Quiz: which half has imposed B field?

- **no B_{z0}**
 - Au bubble *hotter* without B_{z0}!

- **yes B_{z0}**

4.25 ns: early peak power

$E + \text{Biermann}$

$E + \text{Biermann} + \text{Nernst}$
Imposed $B_{z0} = 30 \text{ T}$: capsule B field $\sim 5 \text{ kT}$; Biermann fields small

7.05 ns: bangtime
x-ray flux on capsule
artificially symmetrized

Frozen-in estimate of field increase
• Gas convergence ~ 14
• Increase $\sim (R_{\text{initial}} / R_{\text{final}})^2$
 $= 200x : 30 \text{ T} \rightarrow 6000 \text{ T}$

Nernst de-magnetization:
also seen by C. Walsh in CHIMERA
(Imperial College)
Imposed $B_{z0} = 30$ T: capsule hotter for all MHD models

7.05 ns: bangtime
x-ray flux on capsule artificially symmetrized

Top:
No B_0

Bot:
$B_{z0} = 30$ T
Biermann fields, no imposed

Imposed 30 T axial field

→ Varying capsule gas density
Gas capsules: vary convergence and yield via gas density

capsule gas density [mg/cc]
- rho=1
- 3
- 5
- 6.52 shot
- 7
- 9

rho=1: CR = 28
rho=9: CR = 12
Gas capsules: vary convergence and yield via gas density

Neutron yield

- **no MHD**
 - $B_{z0} = 30$ T, Biermann + Nernst

- **$B_{z0} = 30$ T, Biermann + Nernst**
 - Numerical issues

Neutron production rate
Gas capsules: yield increase ~55% for all gas densities

Max. neutron production rate

- $B_{z0} = 30$ T, Biermann + Nernst
- no MHD

Max. neutron production rate: With B_{z0} / without
Magnetized ICF on NIF

Short term: Warm bigfoot-like magnetized gas capsules: \(B_{z0} = 30 \, T\)
- Field generator available for warm targets ~ Dec. 2018
- Validate:
 - Field compression\(^1\) in NIF-scale capsule
 - Good hohlraum performance, low LPI
 - MHD modeling
- Yield enhancement ~50%: reduced e- conduction
- Other B field signatures: pole vs. waist \(2^{nd}\)ary DT neutrons

\(^1\)Already done at Omega scale:
- Hohenberger PoP 2012
- Chang PRL 2011
- Knauer PoP 2010

Long-term: Make non-igniting targets ignite: \(B_{z0} = 40-50 \, T\)
- Cryo field generator needs engineering work
- Yield enhancement: alpha confinement
- Recover ignition [Perkins\(^2\)]
 - overcome e.g. hydro instabilities
- Relax Lawson condition [Ho\(^3\)]
 - Ignite when impossible w/o imposed B

\(^2\)L J Perkins et al., PoP 2017
\(^3\)D D Ho, APS DPP 2016

Hotspot self-heating condition

- strong B field
- no B field

\(T_{\text{ion}} \, [\text{keV}]\)
\(\rho R \, [\text{g/cm}^2]\)

Figure from D. Ho
BACKUP BELOW
Biermann fields unimportant in capsule

7.05 ns: ~ bangtime

\[|B| \text{ [Tesla]} \]

\[T_e \text{ [keV]} \]

x-ray flux on capsule symmetrized: asymmetries will drive Biermann fields
Magnetized “warm” (293 K) gas-filled capsules: established NIF process for cryo analogs

HDC capsule fill
cryo: 5.5 mg/cc D-He3
warm: pure D or D-He3
Magnetized shots from TANDM, can’t easily handle T

Hohlraum fill
cryo: 0.3 mg/cc He4
warm: C5H12, ~ same e- density
He4 → too much pressure on window

• Warm analogs of “low-foot” CH implosions
• Backscatter, x-ray drive, implosion shape similar
• Capsule gas: C3D8 – light species (H, D, ...) diffuse through CH – could aluminize
• HDC capsules should hold light species
Magnetized gas-filled capsules: up to 2x yield increase with imposed B field

L. J. Perkins [unpublished]:
HDC capsule, low adiabat

D. D. Ho [APS DPP 2016]:
HDC capsule, high adiabat

DT vs. DHe3 gas capsules
- Yield increased mainly by reduced e- conduction
- Not enough alpha’s to matter
- Warm shots: D-He3 fill: e- conduction reduction should have similar effect
Biermann, no imposed, 4.25 ns
Hohlraums, no imposed field: Farmer PoP 2017

NIF shot N151122
HDC capsule
0.3 mg/cc hohlraum gas fill

azimuthal B [MG]

Hall parameter $\omega_{ce} \tau_{ei}$

MHD: Biermann + Nernst
Highly localized
~ 100 T fields

r (cm)

z (cm)

r (cm)

z (cm)

Plots at 5 ns:
late peak power

T_e [keV]

Farmer ‘17

No MHD

MHD

T_e MHD – no MHD [keV]
Hohlraums, no imposed B: Nernst advection reduces effect of B field

“High foot” design
CH capsule
0.6 mg/cc hohlraum gas fill

MHD no Nernst
MHD with Nernst

“What Biermann giveth, Nernst taketh away”
– M. D. Rosen
Hohlraums, no imposed field: MHD slightly reduces “drive deficit”, implosion less oblate

NIF shot N151122
HDC capsule
0.3 mg/cc hohlraum gas fill

Bangtime: measured – simulated reflects total x-ray drive

\[\frac{P_2}{P_0}: \text{hotspot emission shape} \]

Imposed axial field (70 T) *slightly* raises T_e, improves inner-beam propagation

“Low-foot” shot N120321
CH capsule
18 ns: early peak power

Wider equator channel with B

Less n_e w/ B

Higher T_e w/ B, esp. on equator

Each figure: hohlraum quadrants with initial $B_{z0} = 70$ T (top), and without MHD (bottom)

$B_{z0} = 70$ T
Imposed B field: 10 T similar effect in hohlraum as 70 T

High-foot shot N121130
$B_{z0} = 10$ T
15.2 ns: peak power

Figure 5. Plasma conditions at 14 ns (late peak power) from HYDRA simulations of NIF shot N121130. For n_e and T_e plots, top half ($x>0$) has no field, and bottom half ($x<0$) has $B_{z0}=10$ T. The Hall parameter $\omega_{ce} \tau_{ei}$ is capped at 5 for clarity.
Imposed B: improved inner beam propagation, less pancaked implosion

Low-foot shot N1203211
B\textsubscript{z0} = 70 T
21.5 ns: end of pulse

High-foot shot N1211302
B\textsubscript{z0} = 10 T
15.2 ns: peak power

2L. J. Perkins et al., LDRD final report
Room-temperature gas target performance, HDC shell
– What’s the most important role of the B-field?

Most important effect of B for (non-metal) gas targets is on electron heat conduction as there’s few alphas.
⇒ Can get interesting results at low imposed B-fields (~20T) because $\omega \tau_e$ is still very high

<table>
<thead>
<tr>
<th>B_0 (T)</th>
<th>$\omega \tau_e$</th>
<th>α-B-orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>50</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>50</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>50</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>0</td>
<td>n.a</td>
<td>n.a</td>
</tr>
</tbody>
</table>

Fusion yield (kJ) vs. DT gas fill density (mg cm$^{-3}$)

Burn-off ($B=0$)