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“Warm”, Bigfoot-based platform: show capsule
field compression and yield enhancement

Main effect of B field: reduce e- heat conduction perpendicular to B: w ,T,; > 1
Magnetic pressure << matter pressure:  >> 1

HYDRA MHD simulations:
Imposed axial field, “Biermann battery” fields, Nernst advection

BIGFOOT
doesnt believe

Hohlraum

Capsule

Biermann fields
(self-generated)

Like Farmer PoP 20171

Hotter fill
Nernst advection reduces B
Modest effect on drive, shape

B <20 T for symmetric x-ray drive
Modest effect: yields ~ same

Imposed field:
axial 30 Tesla

Like Strozzi JPP 201523

Frozen-in law holds: B field
compressed or rarified w/ plasma
Slightly hotter fill

B ~ 5 kT: ~ frozen-in
Gas-filled capsule yields up ~50%
* For range of gas densities
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“Bigfoot”! platform: starting point for warm
magnetized design

“Bigfoot” campaign on NIF
e Robust hotspot: High rho*R, high velocity

* Price: high adiabat, lower convergence
* Shock overtaking in ablator
 HDC capsule: short pulse, smooth capsules
e Simple hohlraum: low gas fill, low LPI
* Highest yield on NIF

BIGFOOT
doesn't believe
in you either.

Equivalent DT yield: agrees with Lasnex
13-15 MeV neutrons from DD, D3He, ...

5. .
1 C. Thomas, APS-DPP Neutrons B
invited talk 2016 (x10'9) 4 oo PR Neutron Image (CNXI)
’ O —— 100
3 g 50
=]
2 e -y (um) o
= HDC-BF data p
1l0 LASNEX . ]
E %00
0 :
1.0 1.8 2.1
Figure courtesy C. Thomas Laser energy (MJ)
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Why Bigfoot for warm magnetized design?

e Don’t re-invent wheel
* Nice features: predictable, tunable, low LPI
e Not so nice to be irrelevant!

* Enough convergence to amplify B field, reduce e- conduction

* Connection to existing, high-yield cryo platform

e Vary convergence via capsule gas density

N161204: bigfoot NIF shot
* “Subscale” target: less taxing on laser:
e 1.1MJ,340TW
* Low hohlraum gas fill density: 0.3 mg/cc He4d
* Symcap: gas-filled capsule: D[30%]-He3[70%]
* 6.5mg/cc
* no DT ice layer
 HDC capsule, W dopant
* Au hohlraum

Laser power [TW]

OUTER (peak = 240.7 TW)
INNER (peak = 95.5 TW)

BIGFOOT
doesn't believe
inyou either.
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HYDRA MHD model: Full single-fluid Braginskii

Bulk momentum Magnetic force: pressure + tension Maxwell
DT_} - — - g A~ A B BZA ~ a§/6t=_vxg
— = _—Vp+]x%xB ]><B=bb—1-|7( >+ b-Vb > _ =
Dt p+] ( ) 2i0) Mo J=uo'VxB
’ . - — 1 - — V - —
Ohmsla.\w. F=_—3xB + JxB - Pe + 7] e 1B - VT,
Generalized nee e
advection/  Hallterm Biermann resistivity thermalforce
1 induction term battery J
. collisional
collisionless
Ohm’s law: - L o > Vp, 1o
This talk E=-vxB+n] - —e - VT,
1 ) e 1 ]
' Y
always Biermann Nernst: advect B to lower T,
No Righi-Leduc in energy eq.

Plus analogs in electron energy equation
No nonlocal limiting of Nernst: Brodrick, Sherlock

Lawrence Livermore National Laboratory
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= Biermann fields, no imposed

b Lawrence Livermore National Laboratory
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N161204 “post-shot” sims: no imposed B field: ’

Close on bangtime and yield

HYDRA methodology
* 2D R-Z axisymmetric

J. Koning, J. Salmonson

“HyPyD”: Pythonic framework:

DCA non-LTE: Sept. 2017 model: H. Scott
Electron heat flux limit f = 0.15 (high)
X-rays on capsule artificially symmetrized

Without hand tuning

* Sim. bangtime slightly early ~ 60 ps
e Sim. yield 25% above measured
e Biermann fields: little effect

neutron yield

lel2
1.2 —=
~— No MHD =
— 1.0{ == Bo=0 Bier+Ner
R TR AR
0.8 TR
O
3 expt’l yield
> 0.6
S
5 0.4
o
c 0.2
0.0
64 66 68 7.0 7.2

t [ns]

7.4

neutron burn rate

)
6 lels
= No MHD
5{ == Bo=0 Bier+Ner
4

neutron rate [#/us]
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Hohlraum map legend

radius : 1
r>0: | '
runl | - . fillgas LEH run 1
= run 2
r<0:
run 2
> z [vertical in NIF chamber]
One-sided in z
Lawrence Livermore National Laboratory N LTS;‘_% 9
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Biermann fields increase T,
Nernst advection reduces the effect

Like Farmer PoP 2017

Te [keV] Aybubble

no MHD 93 5.0

0.2 4.5

4.0

'é' s 3.5

L 0.0 3.0

" —0.1 2.5

2.0

Biermann %2 15

50 0.2 0.4 0.6 g o

z [cm]

0.3 5.0

no MHD - 45

4.0
0.1

E 3.5

CA N — — = = - - - - 3.0

x —0iL 2.5

H 2.0
Biermann_,,

' 2 9%

+ Nernst _, 5

0.0 0.2 0.4 0.6 0.8

z [cm]

x [cm]

4.25 ns: early peak power

|B| [T]
0.3 100
0.2 80
0.1
60
0.C I
40
-0.1
—0.2 20
—-0.34 : , 0
0.0 0.2 0.4 0.6 0.8
z [cm]
Nernst:

e Advects B in to cold Au wall

e “Erases” much of Biermann
field

Lawrence Livermore National Laboratory
LLNL-PRES-XXXxXx

\\\\\\\\\\\\\\\\\\\\\\\\\\\\



= Imposed 30 T axial field
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Imposed B,, =30 T: N161204
vield increase ~ 50%

Neutron yield

Imposed B runs:
4 lel6

lel2
1.50{
—— No MHD
— 1.25{ == Bo=0 Bier+Ner
i —— By=30T]
- 1.00{ == Bo=30T Bier+Ner
]
S 0.751
c
£ 0.50;
o
c 0.25-
0.00

64 6.6 6.

8 7.0
t [ns]

7 1.0+
—— No MHD
'y 0.8 = = Bo=0 Bier+Ner
2 7| = Bo=30T) Imposed B:
#* — = By=30T Bier+Ner
0.6 peak 1.55x
q’ -
el
©
| .
c 0.4
© 0.2
c
! 0-0 1 T T
1.2 7.4 6.4 6.6 6.8 7.0 7.2 7.4

t [ns]

Layered-DT vs. DHe3-gas capsules
* Yield increased mainly by reduced e- conduction
* Not enough alpha’s to matter
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Imposed B,,=30T:
field “adds” with Biermann in bubble / LEH

|IB| [T] @ 4.25 ns: early peak power

No imposedvs.B,,=30T
B,=30T

E + Biermann E + Biermann + Nernst
E = vxB + eta*)

x [cm]

z [em]

E + Biermann

Imposed-field dynamics unchanged by Biermann or Nernst
Biermann fields unchanged by imposed — at least by eye

0.6 0.

Lawrence Livermore National Laboratory
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Imposed B,,=30T:
effect on hohlraum fill vs. Biermann fields

T, [keV] e 4.25 ns: early peak power
° 7272 7% "Quiz: which half has imposed B field?
E = vxB + eta*) E + Biermann E + Biermann + Nernst
no B,, Au bu@le *hotter* without B!

)+ : : . - :

Bzo= 30T z [em] z [cm] z [em]

* Imposed B,
* Hall parameter > 1 in fill: not small
* Reduced B in Au bubble: Frozen-in expansion

D Montgomery et al., PoP 2015:
T, increase on Omega gas hohlraums

Why small effect from B,,? * Bin R-Z plane: heat flow reduced in 1 direction
* Binside Au to increase T, * Biermann field
e Biermann yes, imposed no * Azimuthal = 2 directions reduced

Lawrence Livermore National Laboratory N ‘TS‘,';E;'; 14
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Imposed B,,=30T:

capsule B field ~ 5 kT; Biermann fields small

|B| [T]
0.0100 5000
B,=0
SRNER Bicr+Ner L 4000
0.0050
B<20T =
E 0.0025 num\erical STE| 3000
O 0.0000
X  —0.0025 Sl
—0.0050
1000

—0.0075 e Bp=30T
—0.0100 E=-vxB + 1) +Bier+Ner 0
-0.010 -0.005 0.000 0.005 0.010

z [em]

7.05 ns: bangtime
x-ray flux on capsule
artificially symmetrized

Frozen-in estimate of field

increase

* (Gasconvergence ~ 14

* Increase ~ (R_initial / R_final)?
=200x:30T—>6000T

ernst de-magnetization:
also seen by C. Walsh in CHIMERA
(Imperial College)

Lawrence Livermore National Laboratory
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Imposed B,,=30T:

capsule hotter for all MHD models

7.05 ns: bangtime

x-ray flux on capsule artificially symmetrized

T, [keV]
Top:

No BO 0.0100
0.0075

Bier+Ner

0.0050

0.0025
0.000C

X [cm]

—~0.0025
—0.0050
—0.0075

E=-vxB + 1/ +Bier+Ner
0
Bot: -0.010 -0.005 0.000 0.005 0.010

B,=30T z [cm]

-0.0100

T, [keV]

Bier+Ner

2 1,

e

=-vxB + nJ +Bier+Ner
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-=> Varying capsule gas density
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Gas capsules: vary convergence and yield via

gas density

capsule gas density [mg/cc]

rho=1

100_J|I|l -|||—I|I|I|I||_
- rho=9: =

- CR=12
T - -
=1 = B
2 " _
S22 50 — —
® - -
0 : :
(e)) - -
- rho=1: -
- CR =28 -
0—|||||||||||||||||||||—
6.5 7.0 7.5

time [ng]

b Lawrence Livermore National Laboratory
LLNL-PRES-XxXxxx

S-XXXXX:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\



Gas capsules: vary convergence and yield via
gas density

Neutron

yield W
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Gas capsules: yield increase ~55% for all

gas densities

Max. neutron production rate

1.0 lelb

B,,=30T,
Biermann + Nernst

0.6
0.4

0.2

0.81

0.0

rho [mg/cc]

Max. neutron production rate:

With B,, / without

1.7

1.6-

1.5-

1.4

1.31

1.21

1.1

1.0 : v r : ;
5 6 7 8 9

rho [mg/cc]
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Magnetized ICF on NIF

Short term: Warm bigfoot-like magnetized gas capsules: B,, =30 T

* Field generator available for warm targets ~ Dec. 2018
e \alidate:

lAlready done at

* Field compression! in NIF-scale capsule <
* Good hohlraum performance, low LPI
* MHD modeling

* Yield enhancement ~50%: reduced e- conduction

« Other B field signatures: pole vs. waist 2"%ry DT neutrons

Omega scale:
Hohenberger PoP 2012
Chang PRL 2011
Knauer PoP 2010

Long-term: Make non-igniting targets ignite: B,, =40-50 T
* Cryo field generator needs engineering work
* Yield enhancement: alpha confinement
* Recover ignition [Perkins?]
overcome e.g. hydro instabilities
* Relax Lawson condition [Ho?]
lgnite when impossible w/o imposed B

2| J Perkins et al., PoP 2017 3D D Ho, APS DPP 2016

Hotspot self-heating condition

100

strong B field = — — -
no B field

Ignition
domain

; lloss

01 02 03 04 05 06 07 08 09 1
minimum pR

PR [g/cm?]
Figure from D. Ho

Lawrence Livermore National Laboratory
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BACKUP BELOW
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Biermann fields unimportant in capsule

7.05 ns: ~ bangtime

|B| [Tesla] T, [keV]
0.0100 0.0100 —4.0
0.0075 0.0075
3.5
0.0050 0.0050 T
—  0.0025 _.  0.0025- 39
= = |
o 0.0000 L 0.0000 2.5
X
~0.0025 *  ~0.0025-
0.0025 20
~0.0050 —0.0050 1
~0.0075 —0.0075 L2
-0.0100 0 _
0.000 0.005 0.010 0'01%9000 0.005 0.0101'0
z [cm] z [cm]

x-ray flux on capsule symmetrized: asymmetries will drive Biermann fields

Lawrence Livermore National Laboratory N ‘TS::&;'; 23
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Magnetized “warm” (293 K) gas-filled capsules:
established NIF process for cryo analogs

Hohlraum fill

cryo: 0.3 mg/cc He4

warm: C5H12, ~ same e- density

He4 - too much pressure on window

HDC capsule fill

cryo: 5.5 mg/cc D-He3
warm: pure D or D-He3
Magnetized shots from
TANDM, can’t easily handle T

J. E. Ralph, D. J. Strozzi, et al., Phys. Plasmas 2016

* Warm analogs of “low-foot” CH implosions

* Backscatter, x-ray drive, implosion shape similar

* Capsule gas: C3D8 — light species (H, D, ...) diffuse through CH —could aluminize
e HDC capsules should hold light species

Lawrence Livermore Mational Laborator \J i 24
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Magnetized gas-filled capsules: up to 2x yield
increase with imposed B field

Fusion yield (kJ)

L. J. Perkins [unpublished]:
HDC capsule, low adiabat

(b)

400

Laser Power (TW)
Radiation temperature (eV)

10

5
Time (ns)

~80% vyield .

120}
100}

increase

Conv ratio

0 2 4 6 8 10
DT gas fill density (mg cm™)

D. D. Ho [APS DPP 2016]:
HDC capsule, high adiabat S

E -* - max. channel

Tr~290 eV

AW AW oM gx% o0 cs0 om0 o

neutron yield vs gas fill time (x10 ns)

3

neutron yield vs imposed B field
3

2.8
26 |
24
2.2
2 L
1.8
1.6 4
1.4
1.2
1

with B field

~80% increase

DT neutron yield (x10'3)
(=]

no imposed B field

DT neutron yield (x1015)

2 3 4 5 6 7 8

0 20 40 60
DT gas fill (mg/cc)

imposed B field (T)

DT vs. DHe3 gas capsules

* Yield increased mainly by reduced e- conduction

* Not enough alpha’s to matter

 Warm shots: D-He3 fill: e- conduction reduction
should have similar effect

Lawrence Livermore National Laboratory
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Biermann, no imposed, 4.25 ns

Azimuthal B [T]

no
Nernst

x [cm]

100

Lawrence Livermore National Laboratory
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Hohlraums, no imposed field: Farmer PoP 2017

NIF shot N151122 MHD: Biermann + Nernst T, [keV] Farmer ‘17
HDC capsule , Highly localized -
0.3 mg/cc hohlraum gas fill ~ 100 T fields 5
azimuthal B [MG] / 4
0 4 1 1 1 |Il 1 1 3
03} wa : ,
§ 0.2/ 3l 1
= 0.1} :
- capsule LEH e 0
D001l 0203040506 V1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
z (cm)
z (cm) Plots at 5 ns:
T. MHD — no MHD [keV
Hall parameter w . 7,; late peak power ©) € [keV] s
04 T T T T T 6 03». ' ; l % | 1.0
5 — 1 Hos
0.3 =
G 0.2 3 - 0.1 4 H-os
~ 01 2 0.0 7 -1.0
- o 1 0.00.10.20.30.40.50.6¥-1.5
'0.00.10.20.30.40.50.6 %0 z (cm)

z (cm)
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Hohlraums, no imposed B:

Nernst advection reduces effect of B field

Farmer ‘17

“High foot” design
CH capsule
0.6 mg/cc hohlraum gas fill

MHD no Nernst MHD with Nernst

r (cm)

-06 -04 -02 00 02 04 06
z (cm) no MHD

“What Biermann gibeth, Nernst taketh atvap”
— 4. . Rosgen

(a)
0.4

azimuthal B [MG]

0.3
0.2

r(cm)

0.1

0.0
0.

(b)
0.6

B (MG)

0 0.1 0.2 0.3 0.4 05 0. —
z (cm)
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Hohlraums, no imposed field: MHD slightly
reduces “drive deficit”, implosion less oblate

Farmer ‘17

NIF shot N151122
HDC capsule

0.3 mg/cc hohlraum gas fill

W. A. Farmer, J. M. Koning, et al.,
Phys. Plasmas 2017

Bangtime: measured - simulated

reflects total x-ray drive P,/P,: hotspot emission shape
\a)
v 200
5 150
&
Q
T 100
5
E 50
0 1 . _ .
0 0.05 0.1 0-25 T 5 3

spatial cell size A6 (deg.)
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Imposed axial field (70 T) slightly raises T,, |strozi‘1s

. . . B,=70T
improves inner-beam propagation 2
“Low-foot” shot N120321 Material D J Strozzi, L J Perkins, et al.,
CH capsule ia ireg_18ns i J. Plasma Phys. (2015)

18 ns: early peak power Each figure: hohlraum

quadrants with initial B, =
| 70T (top), and without MHD
| (bottom)

e- temperature [keV] _,,

0.3

.2

0.1

No B

" Higher T,

0.125

.o W/ B, esp.

s on eq uato\;

0.025

0.0

r [cm]

Bz0=70T

0.000

z [em]
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Imposed B field: 10 T similar effect in

Strozzi ’15
hohlraumas 70 T B, =10T
High-foot shot N121130
B,,=10T Ne/Ner Te [keV]
15.2 ns: peak power = " -
'g 0.1 'g

L. J. Perkins et al.,
LDRD final report

04 05 06 0.7 —030 01 02 03 04
z [cm]

.0 01 02 03

z [em]

AT, [keV]: with B, - without

- Hall parameter
WeeTei p contours: 0.2, 0.5, 0.8 keV

0.30

0.258
£ 0.20
O 015
5 010

0.05

1111 | o000+

OORENNWW A AN
ocuounownounouno
HOOOOONMI®O

0080 01 02 03 04 05 06 07 00861 02 03 04 05 06

z [cm] z [em]
Figure 5. Plasma conditions at 14 ns (late peak power) from HYDRA simulations of NIF shot
N121130. For n, and T, plots, top half (x>0) has no field, and bottom half (x<0) has B,,=10

T. The Hall parameter w.,T¢; is capped at 5 for clarity.
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Imposed B: improved inner beam
propagation, less pancaked implosion

Strozzi’15
B,=10,70T

Low-foot shot N1203211
B,,=70T
21.5 ns: end of pulse

Capsule density [g/cc]

0.02

......................................................................

No B: :
pancakedo: -

............................................

....................................................................................

1D. J. Strozzi, L. J. Perkins, et al.,
J. Plasma Phys. (2015)
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High-foot shot N121130?
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15.2 ns: peak power
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-0.005

-0.010
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Slide courtesy L. J. Perkins

Room-temperature gas target performance, HDC shell ]
- What'’s the most important role of the B-field?
CH, blstorusher ) Most important effect of B for (non-metal) gas targets
Al perm. barrier P is on electron heat conduction as there’s few alphas.
Equiv paylose — = Can get interesting results at low imposed B-fields
(~20T) because or, is still very high

Medium pressure

DT gas (~3-8mg/cc)
B, | o1, | a-B-
(m orbits
Room-temp DT-gas T T T T T T T T T 50 | on | oon ——
capsule; HDC abl 120+t
\ B, y 50 | on | off ——
\ ' . / 100 50 |[off | on —
7L N 50 | off | off ——
/ \y < 80+ 0 na | na ——
Neopentane gas fill %
> 60t
c
9
g 40 i — o — ® — ® — -
L Burn-off (B=0) T ~ ®— —o_ _
20¢
0 . ]
0 4 6. 8 10 12
DT gas fill density (mg cm™)
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