LPI experiments with single and multiple NIF beams

Anomalous Absorption Conference
June 2012

D. J. Strozzi, J. D. Moody, H. F. Robey, L. Divol, P. Michel,
R. L. Berger, E. A. Williams, D. E. Hinkel

Lawrence Livermore National Lab
N120106 and N120115: “keyhole” shots isolate effect of outer cones on inners

- “Keyhole” targets: VISAR detector: tune first 3 shocks
- “Fast rise” (~1 ns) from third to fourth shocks
- Gold hohlraum with “large” laser entrance hole (LEH)
- 3 laser colors: \(\lambda_{30} - \lambda_{\text{out}} = 6.6 \text{ Ang.} \), \(\lambda_{23} - \lambda_{30} = 1.5 \text{ Ang.} \)
- Same energy, except outers extended in N120115
- Very low inner-cone SBS

Fourth pulse fast-rise (N120106)

Window for LPI experiments! VISAR doesn’t give shock data this late
N120106: SRS on both inner cones drops whenouters turn off

30° quad

23° quad

Power (TW)

Time (ns)
SRS spectrum on 30° cone evolves similarly if outers truncated or not; gain spectrum within ~10 nm

Gain spectrum from Hydra rad-hydro by H. Robey with high-flux model; low-flux model gives 20-30 nm longer wavelength
N1201{06, 15}: SRS power when outers are off is 40% of value with outers on

SRS data for 30° cone

30° cone SRS power: N120106 (outers off) / N120115 (outers on): 0.4
Inner SRS drops when outers off: no power transfer, no re-amplification, less saturation

SRS power *not* reflectivity

Reflectivity

Tang:
- R incr. w/ intensity
- linear SRS
- re-amplification
- hard:
 - R indep. of Intensity

SRS Gain = g*intensity

When outers off:
- Decreases because transfer stops
- Decreases if Tang (not hard) saturated
- Decreases because re-amplification stops

Two unknowns: \(f_{\text{out}} \), \(G_{\text{re-amp}} \)

SRS light from one beam amplified when crossing another beam [P. Michel et al.]
One-parameter model for cross-beam energy transfer from outer to inner cones

\[P_{23,30} = P_{23,30}^{inc} + \frac{1}{2} \Delta P_{out} \]

\[\Delta P_{out} = \text{total power xfer from outer to inner cones} \]

\[P_{out}^{inc} = P_{44}^{inc} + P_{50}^{inc} \approx 4P_{30}^{inc} \]

\[P_{23,30} = P_{23,30}^{inc}(1 + 2f_{out}) \]

\[f_{out} = \text{fraction of outer-cone power transferred to inner cones} \]

We neglect spatial non-uniformity in transfer, which should be looked at (R. L. Berger)
Measured ratio of SRS powers relates transfer and re-amplification

\[\frac{P_{SRS}^{\text{on}}}{P_{SRS}^{\text{off}}} = \rho \cdot (1 + 2f_{\text{out}}) \exp \left(\frac{G_{\text{re-amp}}}{R(g \cdot I_{30}^{\text{on}})} \right) \]

\[\rho = \frac{R(g \cdot I_{30}^{\text{on}})}{R(g \cdot I_{30}^{\text{off}})} \to 1 \]

Hard saturation: maximizes \(G_{\text{re-amp}} \)

- \(f_{\text{out}} \approx 0.35 \) agrees w/ capsule symmetry data (R. Town)
- Hydra’s \(f_{\text{out}} \) passes basic check: inconsistent w/ SRS drop if \(f_{\text{out}} > G_{\text{re-amp}} = 0 \) values

\(f_{\text{out}} = 0.35 \)

\(P_{SRS}^{\text{off}} / P_{SRS}^{\text{on}} = 0.4 \) N120106 30° cone

\(f_{\text{out}} = \text{frac. of outer power xferred} \)
Allow for saturation to vary with intensity

- \(G_{\text{re-amp}} = 0\): SRS changes only due to power transfer; \(G_{\text{re-amp}} > 0\) lowers A, raises G
- Neglect change in \(g\) = role of plasma conditions in gain
 — measured spectra similar for N120106 and N120115

\[
A \equiv e^{-G_{\text{re-amp}}} \frac{P_{\text{on}}}{P_{\text{off}}} = \rho (1 + 2f_{\text{out}}) = \alpha(f_{\text{out}}, G)
\]

\[
\rho = \frac{R(P_{30}^{\text{on}})}{R(P_{30}^{\text{off}})} = \frac{R(G \cdot (1 + 2f_{\text{out}}))}{R(G)}
\]

\[
G \equiv gI_{30}^{\text{inc}}
\]

Tang formula:
coupled-mode eqs. w/ pump depletion

\[
\tilde{R} (1 - \tilde{R} + \tilde{s}) = \tilde{s} \exp \left[G \left(1 - \tilde{R} \right) \right]
\]

\[
\tilde{R} = \frac{\omega_0}{\omega_1} \tilde{R}, \quad \tilde{s} = \frac{\omega_0}{\omega_1} \frac{I_{\text{1seed}}}{I_0} \rightarrow 10^{-9}
\]

linear theory

\[
R = s \exp G; \quad G = \frac{1}{2f} \ln \left[\frac{A}{1 + 2f} \right]
\]
Inner-cone SRS is strongly saturated

- Small drop in SRS for large transfer:
 - Linear branch requires small gain, not consistent w/ large SRS
 - Consistent w/ large gain on strongly-saturated, pump-depleted Tang branch

- Estimating G and f_{out}:
 - N120106: SRS power ~ 28% incident when outers off; wavelength = 570 nm
 - No re-absorption of scattered light: $R_{\tilde{t}} = 0.45$, $G = 35$ -> $f_{out} = 0.33$ – near sims!
 - $R_{off} / R_{on} = 0.45 / 0.67 = 0.67$; $I*dR/dI = 0.2$
Conclusions for N120106 and N120115: effect of outer cones on inners

- Inner cone SRS power approximately **doubled** by presence of outer cones
- Hydra modeling, and symmetry scaling with $\Delta \lambda$, suggest 35% of outer beam power transferred at time outers shut off
- Measured SRS decrease consistent with this 35% transfer, and with modest outer-inner re-amplification gain exponent of at most 0.15 - 0.4
- Saturation: neglecting re-amp. (which *minimizes* saturated gain): {large SRS, large transfer, and small SRS drop when outers} imply SRS is strongly saturated, not in linear regime
March keyholes: one inner cone extended – “single-quad” LPI experiments!

- But in a rapidly evolving, maybe azimuthally-asymmetric, hohlraum…
- Slow (3 ns) rise of fourth pulse
- “small” LEH
- 3-color scheme: $\lambda_{30} - \lambda_{\text{out}} = 7.3$ Ang.; $\lambda_{23} - \lambda_{30} = 1.2$ Ang.
- Single-quad expt. if no re-amplification of one inner quad by others on same cone
 — Power transfer excluded by azimuthal symmetry

<table>
<thead>
<tr>
<th>shot</th>
<th>hohlraum</th>
<th>peak power [TW]</th>
<th>extended cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>N120229</td>
<td>DU</td>
<td>420</td>
<td>30</td>
</tr>
<tr>
<td>N120303</td>
<td>DU</td>
<td>420</td>
<td>23</td>
</tr>
<tr>
<td>N120304</td>
<td>Au</td>
<td>420</td>
<td>30</td>
</tr>
<tr>
<td>N120305</td>
<td>DU</td>
<td>320</td>
<td>30</td>
</tr>
</tbody>
</table>

Shot we study
N120305: “single-quad” 30° cone SRS ~ 15-20%
N120305: SRS spectrum on 30° cone

FABS spectrum

\[\lambda \text{ of max. signal} \]

20.3 ns

19.8 ns

gain spectrum

SRS time history

FABS a.u. gain

peak gain

wavelength [nm]
N120305: 30° cone SRS: FABS and linear gain agree when all cones on, differ when just cone 30 on

FABS spectrum

zoomed late, and capped

max FABS
max gain < 580 nm
SRS power

Multi-quad effects not essential to match spectrum
N120305: 30° cone SRS FABS spectrum: filling and cooling rates

SRS matching conditions: λ, $T_e \rightarrow n_e$

<table>
<thead>
<tr>
<th>t [ns]</th>
<th>λ [nm]</th>
<th>n_e/n_{cr} [1.5 keV]</th>
<th>n_e/n_{cr} [3 keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>545</td>
<td>0.102</td>
<td>0.069</td>
</tr>
<tr>
<td>19.5</td>
<td>558</td>
<td>0.115</td>
<td>0.082</td>
</tr>
</tbody>
</table>

fill rate: $dn_e/dt = 0.026 \, n_{cr}/ns$ for 1.5 or 3 keV!

cooling rate: $0.1n_{cr}$ and 2.3 keV match with 560 nm. To keep wavelength constant, $dn_e/dt = 0.026$ is balanced by $dT_e/dt = -1.1$ keV/ns
N120305: 30° cone SRS: what happens when other cones turn off

SRS gain, \(t = 20.3 \) ns

- FABS wavelength of 560 nm in “dead zone” of gain spectrum:
 - LPI physics (speckles, inflation) not likely to fix that
 - Plasma conditions likely wrong

Why gains blueshifted at late time?
- Azimuthal non-uniformity:
 - Plasma really hotter in beams?
- Rad-hydro codes have trouble when laser turned off?
N120305: SBS on 30° cone: gains ~ 1.5 Ang. redshifted vs. measurement

Time-dependent n_e^1 may explain redshift [R. L. Berger]

N120305: plasma maps from H. Robey’s R-Z post-shot Hydra runs

20.3 ns (just 30’s on) - 19.8 ns (other cones start turning off) = difference

$\frac{n_e}{n_{cr}}$

$T_e [\text{keV}]$

~1 keV / ns for inners: close to estimate
Conclusions on March 2012 keyholes

• Measured single-quad inner-cone SRS ~ 15-20%

• When all cones on, single-quad gain spectrum close to data
 — multi-quad effects not essential

• Gain spectrum changes more when just 30’s are on than data –
 — rad-hydro plasma conditions likely wrong, perhaps due to degraded drive

• SBS gain spectrum ~ 1.5 Ang. redshifted vs. data
 — time-dependent density may explain