Magnetic Guiding for Electron Fast Ignition

D. J. Strozzi
Lawrence Livermore National Laboratory

42nd Anomalous Absorption Conference
Key West, Florida, USA

June 28, 2012
Magnetic pipes can guide electrons to fast-ignition hot spot

• Fast electron source:
 – too energetic to stop in DT hot spot
 – large angular divergence

• Imposed axial magnetic field \(\sim 50 \) MG overcomes divergence
 – Magnetic mirroring: increasing field reflects electrons back to source
 – Magnetic pipe: hollow field inside beam radius – prevents mirroring

• Azimuthal pipe of right sign works better than axial pipe:
 – Agrees with expectation from orbits

• Sign of axial pipe matters!
 • Not based on orbits, or resistive Ohm’s law \(E = \eta J_{\text{return}} \)
 • non-resistive terms in Ohm’s law gives different field evolution

• Co-authors: M Tabak, D Larson, H Shay, L Divol, A Kemp, C Bellei, M Marinak, M Key

Fast ignition modeling at LLNL

Explicit PIC for short-pulse laser-plasma interaction: A. J. Kemp, L. Divol

Rad-hydro: fuel assembly in hohlraum, around cone: H. D. Shay, M. Tabak, D. Ho

Transport modeling

Zuma (hybrid-PIC): fast electrons, E/B fields coupled to Hydra: rad-hydro, burn, radiation

Subject of this talk
Zuma: D. J. Larson: Hybrid PIC code for fast electron transport in collisional plasmas

- RZ cylindrical (this talk) or 3D Cartesian geometries

- Reduced dynamics: no light, plasma waves: \(\omega \ll \omega_{pe}, \omega_{laser} \quad k \ll k_{laser}, \lambda^{-1}_{Debye} \)

- Electric field from Ohm's law = massless momentum eq. for background electrons:

\[
m_e \frac{d\vec{v}_{eb}}{dt} = -e\vec{E} + ... = 0 \quad \rightarrow \quad \vec{E} = \vec{E}_C + \vec{E}_{NC}
\]

\[
\vec{E}_C = \vec{\eta} \cdot \vec{J}_{\text{return}} - e^{-1}\vec{\beta} \cdot \nabla T_e \quad \vec{E}_{NC} = -\frac{\nabla p_e}{en_{eb}} - \vec{v}_{eb} \times \vec{B}
\]

Resistive Ohm's law: \(\vec{E}_C = \eta \vec{J}_{\text{return}} \)

\(\vec{\eta}, \vec{\beta} \) from Lee-More-Desjarlais and Epperlein-Haines

Relativistic fast electron advance: \(\vec{F} = -e(\vec{E} + \vec{v} \times \vec{B}) \)

- Fast e- energy loss and angular scattering [Solodov, Davies]

- \(\vec{J}_{\text{return}} = -\vec{J}_{\text{fast}} + \mu_0^{-1} \nabla \times \vec{B} \)

Ampere w/o displacement current

\(\vec{J}_{\text{return}} \cdot \vec{E}_C \) collisional heating

- \(\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \) Faraday

Full Ohm’s law results differ from \(E = \eta^* J_{\text{return}} \)

Nicolai et al., APS DPP 2010, Phys Rev E 84, 016402 (2011)

Strozzi et al., IFSA 2011 (submitted)
This talk:
- both codes in R-Z geometry, fixed Eulerian meshes
- 20 ps transport (Zuma + Hydra), then 180 ps burn (just Hydra)

Diagram:
- Coupling step
 - t_0: Plasma conditions to Zuma (densities, temperatures)
 - t_1: Hybrid transport (energy, momentum deposition rates)
 - t_2: Hydro steps

Flowchart:
- Zuma steps...
- Hydra steps...

Code coupling:
- Zuma steps
- Hydra steps
- Coupling step
Electron spectra from PSC full-PIC sims (A. J. Kemp, L. Divol)

Energy spectrum

\[
\frac{dN}{d\varepsilon} = 0.82 \exp[-\varepsilon/1.3] + \frac{1}{\varepsilon} \exp[-\varepsilon/0.19]
\]

“hot:” from pre-plasma \(\varepsilon = \frac{E}{T_{\text{pond}}} \) \(\langle \varepsilon \rangle = 1.02 \)

“cold:” from \(n_{\text{crit}} \)

\[
T_{\text{pond}} / m_e c^2 \equiv \left[1 + a_0^2 \right]^{1/2} - 1 \sim a_0
\]

Angle spectrum

\[
\frac{dN}{d\Omega} = \exp\left[-(\theta / \Delta\theta)^4\right] \quad \Omega = \text{solid angle}
\]

\[
\langle \theta \rangle \approx 0.69 \Delta\theta
\]

<table>
<thead>
<tr>
<th>(\Delta\theta)</th>
<th>(\langle \theta \rangle)</th>
<th>runs used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>6.9°</td>
<td>artificially collimated source</td>
</tr>
<tr>
<td>90°</td>
<td>52°</td>
<td>matches PSC; realistic source</td>
</tr>
</tbody>
</table>

\[\Delta \theta \]

\[\langle \theta \rangle \]

transport code

PSC

classical ejection angle:

\[\tan \theta = \left[\frac{2}{(\gamma - 1)} \right]^{1/2} \]
Idealized high-gain target: carbon cone, ideal ignition energy of 8.7 kJ

Ideal e-ignition energy [Atzeni et al., PoP 2007]:
• 2D rad-hydro, no cone, cylindrical beam heat source

 \[E_{ig} = \frac{140 \text{ kJ}}{(\rho/100 \text{ g/cc})^{1.85}} \]

 \[= 8.7 \text{ kJ} \]

• 527 nm (2\(\omega\)) wavelength laser: lowers \(T_{\text{pond}} \sim \lambda\)

• Ideal burn-up fraction: \(\rho R/(\rho R+6) = 1/3\)

• Ideal fusion yield = 64 MJ
Ignition energy is 15x ideal value with collimated electron source

\[E_f = \text{fast e− energy [kJ]} \]

<table>
<thead>
<tr>
<th>Energy spectrum</th>
<th>initial $\Delta \theta$</th>
<th>angular scattering</th>
<th>E/B fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 MeV</td>
<td>0</td>
<td>no</td>
<td>none</td>
</tr>
<tr>
<td>1.5 MeV</td>
<td>10°</td>
<td>yes</td>
<td>none</td>
</tr>
<tr>
<td>PIC</td>
<td>10°</td>
<td>yes</td>
<td>none</td>
</tr>
<tr>
<td>PIC</td>
<td>10°</td>
<td>yes</td>
<td>$E = \eta J_{\text{return}}$</td>
</tr>
<tr>
<td>PIC</td>
<td>10°</td>
<td>yes</td>
<td>full Ohm’s</td>
</tr>
</tbody>
</table>
Realistic divergence greatly increases ignition energy; axial magnetic field 30-50 MG mitigates divergence

- Omega implosion experiments: compressed 50 kG seed field to:
 30-40 MG (cylindrical1), 20 MG (spherical2)

- Rad-hydro-MHD studies of B field compression have begun: H. D. Shay, M. Tabak

1J. P. Knauer, Phys. Plasmas 17, 056318 (2010)
Axial magnetic field that increases in z leads to mirror force, reflects fast electrons

$$\nabla \cdot \vec{B} = 0 \quad \rightarrow \quad B_r = -\frac{1}{r} \int_0^r dr' r' \frac{\partial B_z}{\partial z}$$

$$\vec{F} = q\vec{v} \times \vec{B} \quad \rightarrow \quad F_z = -qv_\phi B_r$$

mirroring: F_z towards decreasing B_z

Initial B_z profiles

Fast e- energy reflected to left edge

Fusion yield

- Fast e- energy [kJ]
- Energy fraction
- Fusion yield [MJ]
- z [µm]
- B_z [MG]
- DT fuel

- Fast e-source
- Sharp rise near source

DJS: AA 2012 p. 10
Magnetic pipe: hollow inside spot radius, avoids mirroring

\[B_{z0} = 50 \text{ MG pipe} \]
\[B_{z0} = 50 \text{ MG uniform} \]
\[B_{z0} = 50-75 \text{ MG} \]
\[B_{z0} = 0-50 \text{ MG} \]

Fusion yield

Fast e- energy reflected to left edge

Initial \(B_z \) max = 50 MG

DT fuel

pipe

Fast e- energy [kJ]

energy fraction

fast e- energy [kJ]
Magnetic pipes: sign and direction (axial vs. azimuthal) matters

Thinner pipe: easier to assemble

- So far I’ve used $B_z > 0$, the wrong sign – sorry!

* Courtesy C. Bellei
Orbits of electrons in magnetic pipe fields

Orbit-based quality of pipe confinement:
B_φ < 0
B_z < 0 and B_z > 0 same
B_φ > 0

Orbits explain performance of B_φ signs, and B_φ vs B_z – but not role of sign(B_z)

Cartesian geometry: (r,φ,z) = (x,y,z)
Magnetic pipes in simplified, uniform plasma

Zuma runs, no Hydra, no cone or dense fuel

Next page: Power = rate energy exits at right, \(r < 20 \, \mu m \), at most 1.3 MeV per electron (~ stopping in hot spot)
Full Ohm’s law gives different confinement based on sign(B_z):

- **$E = 0$, B fixed**
 - $B_\phi < 0$ best
 - $B_z < 0$ and > 0 same
 - $B_\phi > 0$ worst
 - Coupling as expected from orbits

- **$E = \eta J_{\text{return}}$, B evolves**
 - coupling drops:
 - plasma diamagnetic
 - ordering unchanged

- **E = full Ohm’s law**
 - $B_z < 0$ better than $B_z > 0$!
Full Ohm’s law: magnetic fields evolve differently than with $E = \eta J_{\text{return}}$, and for each sign ($B_z$)

$B_{z0} > 0$
$+B_z$ plotted

$B_{z0} < 0$
$-B_z$ plotted

Initial B_z

Fields at $t = 20$ ps

$E = \eta J_{\text{return}}$

$E = \text{full Ohm’s law}$

plasma diamagnetic: reduces pipe, similar for both sign(B_z)

More change in B field, different for each sign(B_z)!

230 MG peak!
Is fast ignition a pipe dream?

- Imposed, axial magnetic fields 30-50 MG recover ignition energy of artificially-collimated electron source

- Magnetic mirroring in increasing field reduces benefit

- Mirroring overcome with magnetic pipes – hollow out to e-source radius

- Pipe confinement best for one sign of B_ϕ – beats either B_z sign
 - Orbits explain this
 - Fast e- can self-generate in radial resistivity gradient

- $B_z < 0$ pipe confines better than $B_z > 0$
 - Orbits don’t explain this!
 - Nor does resistive Ohm’s law $E = \eta J_{return}$
 - Full Ohm’s law does: B fields evolve differently