Understanding Raman Scattering in NIF Ignition Experiments

Lawrence Livermore National Lab

Anomalous Absorption Conference
20 June 1011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Release number LLNL-CONF-489132
Linear gain analyses better match reflectivity trends with improved plasma and laser beam models

- **“High Flux Model” (HFM)** for rad-hydro:
 - DCA opacities, 0.15 electron heat flux limiter
 - Cross-beam energy transfer (linear model with clamp)
 - Measured backscatter removed

- **Linear gain spectrum** with HFM plasma conditions:
 - Close to measured SRS wavelength
 - Agreement better if multi-quad (overlapped beam) laser intensity used, rather than single-quad

- **Gain and reflectivity time histories:**
 - Gain increases in time, while reflectivity first increases and then decreases late in peak power

- **Spatially non-uniform cross-beam energy transfer:**
 - Gain decreases late in peak power, like measured reflectivity

- **Electron trapping:** pF3D simulations give SRS Langmuir waves above threshold for trapping nonlinearities
We study NIF shot N110214 - symmetry capsule (symcap) with \(\sim 1.3 \) MJ laser energy - 30° (inner) cone

- “Post-transfer” reflectivity = measured SRS / Lasnex power w/ cross-beam transfer.

- SRS energy reflectivity [joules out / joules in]:
 - Incident power: 27%
 - Post-transfer power: 19%

Power on one quad [TW]

<table>
<thead>
<tr>
<th></th>
<th>post-transfer power</th>
<th>incident power</th>
<th>SBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>post-transfer power</th>
<th>incident power</th>
<th>SRS reflectivity: nominal, post-transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DJS: AA SRS 2011; p. 3
SRS wavelength increases in time, indicating SRS occurs at progressively higher density.

Measured SRS FABS spectrum N110214

- *Suggested by L. Suter*

FABS = full aperture backscatter station
NBI = near-backscatter imager

Drop in FABS signal due to motion of SRS light out of detector – total (FABS+NBI) SRS doesn’t drop.

[J. Moody, prior talk]
With HFM (high-flux model), wavelength of peak multi-quad gain agrees well with FABS, indicating plasma conditions are ~ right

- Wavelength of max SRS separates power history from plasma conditions.

- Early peak power: 17-18ns:
 - Single-quad gains peak at a longer wavelength.
 - FABS signal reduced due to motion of SRS.
 - longer wavelengths refract more, so FABS light may be shorter wavelength than total SRS light.
Multi-quad SRS gains peak at shorter wavelength since beams overlap near laser entrance hole.

Multi-quad SRS gains peak at shorter wavelength than single-quad gains: beams overlap more near the LEH, where the electron density, and plasma frequency, is lower.
Spatially uniform transfer: reflectivity scales with gain until late in peak power

- Gain tracks reflectivity until ~ 18.5 ns (mid-late peak power).
- At late time, reflectivity drops but gain doesn’t.
- Late-time gain coming from long wavelengths - generally not observed in FABS.
More detailed calculations of cross-beam transfer introduce spatial non-uniformity in the intensities

- Current HFM: distributes transferred power uniformly across the beam
- Account for spatial non-uniformity: run SLIP at one time (18 ns): E. A. Williams, later talk
- Provides 3D spatial beam intensity multiplier. Use this mask at all times
- Calculate SRS gain with spatially non-uniform transfer, and single intensities

The spatial non-uniformity of cross-beam transfer improves the correlation between SRS and gain
SRS gain with spatially non-uniform beam transfer tracks reflectivity better than with uniform transfer.

Uniform Transfer

- Gain increases due to long-wavelength “blip”

Non-uniform Transfer

- Gain increases due to long-wavelength “blip”

Diagram showing comparison between uniform and non-uniform transfer.
Threshold for electron trapping nonlinearity given by “bounce number” N_B

- **Electron trapping nonlinearities:**
 - Effective only if electrons resonant w/ Langmuir wave complete ~ 1 bounce orbit before being detrapped.

Important detrapping processes:
1. Speckle sideloss (geometric effect): $N_{B,sl}$
2. Collisions: electron-electron and electron-ion treated together: $N_{B,coll}$
 (SSD way too slow to matter)

\[
\text{Bounce number: } \quad N_B \equiv \frac{\tau_{de}}{\tau_B} = \frac{\text{detrapping time}}{\text{bounce period}} \sim \delta n^{1/2}
\]

\[
sideloss: \quad N_{B,sl} = \left[\frac{\delta n}{\delta n_{sl}} \right]^{1/2} \quad \delta n_{sl} = 2.67 \left[\frac{8}{F} \frac{\lambda_{De}}{\lambda_0} \right]^2
\]

\[
collisions: \quad N_{B,coll} = \left[\frac{\delta n}{\delta n_{coll}} \right]^{3/2}
\]

Joint bounce number: $\quad N_B^{-1} = N_{B,sl}^{-1} + N_{B,coll}^{-1} \quad$ Independent detrapping rates add.
Trapping assessment of pF3D run suggests trapping occurs in parts of the 30 degree beam

pF3D:
- parallel, paraxial envelope code
- linear plasma response used

N110214 profiles, time = 18 ns:
- Trapping can change the local gain
- pF3D SRS reflectivity ~ 20%

Risk of trapping or Langmuir Decay Instability

\[N_B \sim [\delta n_{LW}]^{1/2} \]
(sideloss and collisions)

\[k_{LW} \lambda_{De} = 0.4 \]

DJS: AA SRS 2011; p. 11
Conclusions

- “High Flux Model” rad-hydro with spatially uniform cross-beam energy transfer:
 - SRS gain spectrum agrees well with measurements
 - Especially when multi-quad laser intensity used
 - Except for long-wavelength gains late in time – not seen in experiments

- Spatially uniform transfer: reflectivity and gain correlate until late in peak power
 - Late in time, reflectivity drops but gain does not

- Spatially non-uniform transfer: the correlation of reflectivity and gain improves

- Electron trapping: pF3D simulation shows regions in the beam where Langmuir wave amplitudes above threshold
 - May play a role in some of the SRS seen

A cross-beam transfer model, including spatial non-uniformity and plasma profile modification, is being added to Hydra
Backup slides after here
Observed SRS is consistent with the colder component of the hot electron spectrum

\[\frac{dN}{dE} \sim \frac{E_1}{T_1^2} \exp\left[-\frac{E}{T_1}\right] + \frac{E_2}{T_2^2} \exp\left[-\frac{E}{T_2}\right] \]

“SRS component”:
\[E_1 = 70 \text{ kJ}, \quad T_1 = 18 \text{ keV} \]
\[0.5 m_e v_{\text{ph,LW}}^2 = 18 \text{ keV for } \lambda_{\text{SRS}} = 570 \text{ nm} \]
“conventional” backward SRS, measured in FABS/NBI

“Superhot component”:
\[E_1 = 0.8 \text{ kJ}, \quad T_1 = 124 \text{ keV} \]
independent LPI process, such as:
two-plasmon decay, backward SRS at \(n_{\text{crit}}/4 \), forward SRS, ...

x-ray spectra N110214, N110208 fit, N110211 fit

keV/keV.sr
1.0E+16
1.0E+15
1.0E+14
1.0E+13
1.0E+12
1.0E+11

keV
0 100 200 300 400

SRS component
Superhot (most preheat)

> 170 keV: source of capsule preheat

DJS: AA SRS 2011; p. 14
Significant gain can occur at longer wavelengths than measured on FABS

- Long-wavelength SRS washed out in ray-averaging, since each ray has a narrow peak (weak damping) at a different wavelength.

- Long-wavelength SRS may not occur: shorter-wavelength SRS occurs at lower density, nearer the LEH, and may deplete the pump.

- If it does occur, it will be more refracted than shorter-wavelength light [c.f. J. Moody’s talk] and may miss the FABS detectors.

- Also, it will be more absorbed in the target by inverse bremsstrahlung.

\[
\text{time} = 18 \text{ ns} - \text{mid peak power}
\]

- **FABS intensity [a. u.]**
- **multi-quad ray-avg. gain**
- **multi-quad log [ray-avg. exp (G)]**
Spatially varying beam transfer gives a wider distribution of ray gains

FOPAG = fraction of ray power above a gain.

For each ray: find the max gain within $\lambda = +/- 10$ nm of $\langle \lambda_{\text{max}} \rangle_{\text{avg}}$.

single-quad gain, uniform xfer
multi-quad gain, uniform xfer
single-quad gain, varying xfer
Damping reduction and frequency shift in finite-radius Langmuir wave: theory by H. A. Rose

Damping Reduction:
more rapid in 2D than 3D

Frequency Downshift:
rapidly increases with $k\lambda_D$

![Graphs showing damping reduction and frequency downshift](image-url)
Fraction of coupling above a bounce number: allows quantification of trapping

\[\frac{dE_{scat}}{dt}_{coup} \propto E_{las} \delta n_{epw} \]

63.9 ps [black], 65.5 ps [red], sideloss + collisions [solid], sideloss [dash]