Cone-Guided Fast Ignition with Imposed Magnetic Fields

LLNL

Anomalous Absorption Conference
24 June 1011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Supported by LDRD project 11-SI-002
Release num. LLNL-CONF-488273
Our fast ignition modeling approach

Explicit PIC modeling of short-pulse laser-plasma interaction: A. J. Kemp, L. Divol

Rad-hydro: fuel assembly in hohlraum, around cone: H. D. Shay, M. Tabak, D. Ho

Transport modeling of fast electron heating: hybrid PIC code Zuma coupled to Hydra

Subject of this talk
Some trick, like imposed magnetic fields, is needed to achieve fast ignition with a realistic, divergent fast electron source

- Fast electron source generated by short-pulse laser – characterized by PIC sims:
 - Energy spectrum has two temperature components, many electrons too energetic to stop in DT hotspot
 - Angle spectrum is divergent – serious challenge!

- Transport modeling: hybrid PIC code Zuma coupled to Hydra rad-hydro code

- Imposed uniform axial magnetic fields > 30 MG mitigate divergence
 - Can be produced in an implosion with seed field ~ 50 kG

- Magnetic mirroring in non-uniform field prevents fast electrons from reaching fuel

- Hollow magnetic pipe can prevent mirroring
Fast electron source distribution found from explicit PIC laser-plasma simulations with PSC code (A. Kemp, L. Divol)

Electron density (ripples due to laser absorption)

- 3D Cartesian run, 1 µm laser wavelength, pre-plasma with $n_e \sim \exp[z / 3.5 \ \mu m]$
- Intensity at vacuum focus ($z = 10 \ \mu m$): $I_{\text{las}}(r) = I_0 \exp[-(r/18.3 \ \mu m)^8]$
- $I_0 = 1.37 \ \text{E}20 \ \text{W/cm}^2$

Extraction box: all fwd-going electrons with kin. en. > 0.5 MeV

Source box: fast electrons excited here in equivalent transport simulation

$$f(E,\theta) = f_E(E) \ast f_\theta(\theta) \quad \text{factorized}$$

$$I_{\text{fast}}(r,t) = 0.52 \ast I_{\text{las}}(r,t)$$
PIC fast electron energy spectrum is quasi two-temperature

\[\frac{dN}{d\varepsilon} = \frac{1}{\varepsilon} \exp[-\varepsilon / 0.19] + 0.82 \exp[-\varepsilon / 1.3] \quad \varepsilon = \frac{E}{T_p} \]

We scale \(dN/d\varepsilon \) with ponderomotive temperature [S. C. Wilks et al., Phys. Rev. Lett. (1992)]

\[\frac{T_{\text{pond}}}{m_e c^2} = \left[1 + a_0^2 \right]^{1/2} - 1 \sim a_0 \equiv \sqrt{\frac{I_{\text{las}} \lambda^2}{1.37 \cdot 10^{18} \text{ W cm}^{-2} \mu\text{m}^2}} \]

\[\lambda = 1 \mu\text{m}, \quad I_0 = 1.37 \text{ E20 W/cm}^2 \rightarrow T_{\text{pond}} = 4.63 \text{ MeV} \]

- Same spectrum in source and extraction box

- Ignition DT hot spot: \(\rho \Delta z \sim 1.2 \text{ g/cm}^2 \). Removes \(\sim 1.4 \text{ MeV} \) from a fast electron (neglecting angular scatter)
 - Spectrum is too energetic to stop in hot spot
PIC fast electron angle spectrum is very divergent

solid angle spectrum in source box:
\[\frac{dN}{d\Omega} = \exp \left[-\left(\frac{\theta}{\Delta \theta} \right)^4 \right] \]

\(\Delta \theta = 90^\circ \) needed to agree with PIC results

Solid angle spectrum

- Transport source box, \(\Delta \theta = 90^\circ \)
- PIC extraction box
- Transport extraction box

Average polar angle

Zuma-Hydra runs used for

<table>
<thead>
<tr>
<th>(\Delta \theta)</th>
<th>(<\theta>)</th>
<th>artifically collimated source</th>
<th>realistic PIC source</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>6.9°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>52°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zuma: Hybrid PIC code (D. J. Larson)

• Field and background dynamics simplified to eliminate light and plasma waves:
 valid for $\omega << \omega_{\text{plasma}}, \omega_{\text{laser}}$, $k << k_{\text{laser}}, 1/\lambda_{\text{Debye}}$

• Relativistic fast electron particle push: $\vec{F} = -e(\vec{E} + \vec{v} \times \vec{B})$

• Fast e- energy loss (drag) and angular scattering: formulas of Solodov, Davies

• $\vec{J}_{\text{return}} = -\vec{J}_{\text{fast}} + \mu_0^{-1} \nabla \times \vec{B}$
 Ampere's law without displacement current

• Electric field given by massless momentum equation for background electrons:

$$m_e \frac{d\vec{v}_{eb}}{dt} = -e\vec{E} + \ldots = 0$$

$$\rightarrow \vec{E} = \eta \cdot \vec{J}_{\text{return}} - e^{-1} \vec{\beta} \cdot \nabla T_e - \frac{\nabla p_e}{en_{eb}} - \vec{v}_{eb} \times \vec{B}$$

$$\eta = \text{resistivity from Lee-More-Desjarlais}$$

• $\vec{E} = \eta \vec{J}_{\text{return}}$
 Simple Ohm's law, used for this talk's runs

• $\vec{J}_{\text{return}} \cdot \vec{E}$
 Ohmic heating

• $\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$
 Faraday's law
Hybrid PIC transport code Zuma coupled to rad-hydro code Hydra (M. M. Marinak, D. J. Larson, L. Divol)

- Both codes run in cylindrical R-Z geometry on fixed Eulerian meshes (which can differ)

- Data transfer done via files generated by Overlink code [J. Grandy et al.]

- Typical run: 20 ps transport (Zuma + Hydra), then 180 ps burn (just Hydra)
 - 2-3 wall-time hours on 40 cpu’s

- Hydra details: IMC photonics, neutron deposition turned off, no MHD package used
ignition-scale toy target with carbon cone

- Ideal burn-up fraction $f = \frac{\rho R}{(\rho R + 6)} = \frac{1}{3}$
- Ideal fusion yield = $338 \text{ MJ} \times \text{Mass [mg]} \times f = 64.4 \text{ MJ}$
- Optimal e-beam ignition energy [Atzeni et al., PoP 2007] $140 \text{ kJ} / (\rho/100 \text{ g/cc})^{1.85} = 8.7 \text{ kJ}$
- Beam intensity = $I_0 \exp(-0.5*(r/23)^8)$ HWHM: $r = 24 \mu\text{m}$
- 527 nm (2ω) wavelength laser: lowers $T_{\text{pond}} \sim \lambda$

DT density

- Cone: 30 g/cc carbon
- DT fuel

- $\rho > 100 \text{ g/cc}$: $\rho R = 3.0 \text{ g/cm}^2$
- mass = 0.572 mg

DT density vs. radius

- $t \text{ [ps]} = 2.07497$
- $\rho \text{ [g/cm}^3\text{]}$

Beam intensity vs. time

- $e^\frac{-1}{2}(r/23)^8$
PIC-based source divergence gives prohibitive ignition energies; dramatically reduced if source is artificially collimated

87 kJ ignition energy
10x ideal value:
divergence, spectrum too energetic, pulse and spot un-optimized

\[
\Delta \theta = 10^\circ \quad \text{(artificial collimation)}
\]

\[
\Delta \theta = 90^\circ \quad \text{(PIC-based)}
\]

max = 1307 Gbar
max = 235 Gbar
Adding an initial, uniform, axial magnetic field B_z reduces ignition energy to that of artificially collimated beam

$$E_{\text{fast}} = \text{fast e}^- \text{ energy \ [kJ]}$$

$$r_{\text{Le}} \propto \frac{\gamma \beta}{B} = \frac{33.4 \ \mu m}{B_{\text{MG}}} \left[W^2_{MV} + 1.02 W_{MV} \right]^{1/2}$$

For a 2 MeV e- (roughly optimal to deposit energy in hot spot), $r_{\text{Le}} = 82$ um / B [MG]

$$r_{\text{Le}} = \text{spot radius (24 \ um)} \text{ for } B = 3.4 \ \text{MG}: \text{lower bound on when } B \text{ fields matter}$$

Rad-hydro-MHD studies of B field compression have been started by H. D. Shay, M. Tabak

Omega experiments show compression of 50 kG seed B field in cylindrical implosions1 to 30-40 MG, and in spherical implosions2 to 20 MG

1J. P. Knauer, Phys. Plasmas 17, 056318 (2010) \quad 2P. Y. Chang et al., talk J05-2, APS-DPP 2010
Implosion can compress magnetic field in DT, but short-pulse LPI will likely happen in the seed field

- Cone outer surface compressed
- Cone inner surface doesn’t move – shock break-out would fill cone
- B field in vacuum region is uncompressed; may increase over seed field due to diffusion

Nested conductors:
Field compressed between conductors, but not inside inner one

Flux $B_z \times r^2$ conserved inside conductor, unless field diffuses due to resistivity
Axial variation in magnetic field strength reduces hot-spot heating due to magnetic mirroring

\[B_z(r, z) = B_{z0} + (B_{z1} - B_{z0})G(r)H(z) \]

\[H(z) = \left(1 + \left(\frac{z - z_0}{\Delta z}\right)^2\right)^{-1} \]

\[G(r) = \exp\left[-(r / 50 \ \mu m)^8\right] \]

Axial variation in \(B_z \) gives rise to \(B_r \), to satisfy \(\text{div} \ B = 0 \). Leads to mirror force in \(z \) direction.
Magnetic mirroring in cylindrical B field

\[\frac{d\vec{p}}{dt} = q\vec{v} \times \vec{B} \]

\[\vec{B} = B_z(z)\hat{z} + B_r(r,z)\hat{r} \]

\[\omega_{cz} = \frac{qB_z}{\gamma m} \]

\[\nabla \cdot \vec{B} = 0 \quad \Rightarrow \quad B_r = -\frac{r}{2} \frac{\partial B_z}{\partial z} \]

\[\frac{d^2r}{dt^2} = -\frac{d}{dr} U_r \quad U_r = \frac{l_0^2}{2r^2} + \frac{r^2}{8} \omega_{cz}^2 \]

equilibrium: \[dU_r / dr = 0 \quad \Rightarrow \quad r_E = \left| \frac{2l_0}{\omega_{cz}} \right|^{1/2} \]

Axial motion:
\[\frac{d^2z}{dt^2} = \frac{1}{8} \left(\sigma r_E^2 - r^2 \right) \frac{\partial}{\partial z} \omega_{cz}^2 \]
\[\sigma = \text{sign}(l_0 \omega_{cz}) \]

Mirroring in increasing \(B_z \):
- Fight between \(dB_z/dz \) and decreasing radius
- Adiabatic invariant for slowly changing \(B_z \):
 "loss cone" \(\tan^2 \theta_L = B_{z0} / (B_{z1} - B_{z0}) \)
- Loss cone not accurate for rapidly-varying \(B_z \):
 Large \(B_r \) can mirror particles with \(v_{\text{perp}}(t=0) = 0 \)
 (always in adiabatic loss cone)

Radial motion:
Axial motion:
We can circumvent mirroring with “magnetic pipe:”

B_{z_0} peaks off-axis

- Run with $B_{z_0} = 90$ MG, $E_{\text{beam}} = 87$ kJ ignites

- Using $B_{z_0} = 60$ MG, or narrower in z, or $E_{\text{fast}} = 43.4$ kJ all fail (<270 kJ fusion yield).

- Artifically collimated beam ($\Delta \theta = 10^\circ$) requires $E_{\text{fast}} = 87$ kJ to ignite.

Very little backward-going $e-$, unlike mirroring cases
Imposed magnetic fields may circumvent large fast-electron divergence for fast ignition, but mirroring is an issue

- Artificially collimated e- beam: ignition $E_{\text{fast}} = 87$ kJ
- Realistic PIC beam divergence: ignition $E_{\text{fast}} \sim$ MJ’s
- Uniform initial axial magnetic field > 30 MG: ignition $E_{\text{fast}} = 100$ kJ
- Non-uniform field peaking in fuel: fast e- reflected by mirror force
- Magnetic pipe: hollow radial profile: can recover ignition $E_{\text{fast}} = 87$ kJ

How can we assemble such fields in an implosion?
• Backup slides beyond here
We are pursuing fast ignition for high gain and inertial fusion energy.

Long-pulse compression laser \(\sim 1 \text{ MJ} \)

\(\rho \sim 300-500 \text{ g/cm}^3 \)

\(\rho_r > 2 \text{ g/cm}^2 \)

Final state of compressed target

| 200 \(\mu \text{m} \) |

Cold dense fuel

Low density corona

Gold (or other mid/high Z) cone

"Transport region:" \(\sim 50-100 \mu \text{m}; \) Subject of this talk.

Short-pulse laser produces fast electrons

10-20 ps pulse

\(< 100 \text{ kJ} \) (to ever be built)

Power \(\sim 5-10 \text{ PW} \)

\(\sim 50 \mu \text{m} \) focal spot (FWHM)

Isochoric ignition hot-spot: $T_{\text{ion}} > 4$ keV and $\rho * R * T_{\text{ion}} > 5$ g cm$^{-2}$ keV

X_h = hot-spot value; ρ_c = density of surrounding cold fuel. $\rho_c = \rho_h$ for isochoric.

$\rho_h R_h T_h (\rho_c / \rho_h)^{1/2}$ [g cm$^{-2}$ keV]

$\rho * R * T_{\text{ion}} = \text{max. at end of e- source pulse, centered on peak ion pressure.}$
We can circumvent mirroring with “magnetic pipe:”

B\(_{z0}\) peaks off-axis

\[B_z(r, z) = B_{z0} + (B_{z1} - B_{z0})G(r)H(z) \]

\[G(r) = \exp\left[-\left(\frac{r-r_0}{\Delta r}\right)^4\right] \]

\[H(z) = \left[1 + \left(\frac{z-z_0}{\Delta z}\right)^2\right]^{-2} \]

Field type 2a: \(B_{z0} = 0.1\) MG, \(B_{z1}\) varies, \(z_0 = 20, \Delta z = 50, r_0 = 30, \Delta r = 10\)

Field type 2b: same as 2a, but \(\Delta z = 100\)
Magnetic field evolution governed by MHD frozen-in law

\[\partial_t \vec{B} = -\nabla \times \vec{E} \]
\[\vec{E} = -\vec{v}_e \times \vec{B} + \eta \vec{J}_e \]
\[\nabla \times \vec{B} = \mu_0 \vec{J}_e \]

Cylindrical geometry:
\[\vec{B} = B_z(r,t) \hat{z} \]
\[\eta = \eta(r,t) \]
\[\vec{v}_e = v_r(r,t) \hat{r} \]

Let \(\frac{dr_i}{dt} = v_r(r_i,t) \) follows plasma electron flow

Then \[\frac{d\psi}{dt} = \frac{2\pi}{\mu_0} \left(r \eta \frac{\partial B_z}{\partial r} \right) \bigg|_{r_i}^{r_2} \]

Frozen-in law: magnetic flux between two surfaces moving with the plasma electrons changes only due to magnetic diffusion.
Mirroring with non-uniform imposed B-fields: effective beam energy partly follows mirror scaling

<table>
<thead>
<tr>
<th>B field type</th>
<th>$B_{z,fuel} / B_{z,exc}$</th>
<th>mirror Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.66</td>
<td>0.52 (mid)</td>
</tr>
<tr>
<td>F</td>
<td>0.34</td>
<td>0.24 (worst)</td>
</tr>
<tr>
<td>G</td>
<td>0.88</td>
<td>0.76 (best)</td>
</tr>
</tbody>
</table>

black: uniform $B_{z0}=50$ MG; mirror $\Phi = 1$.
Evidence of mirroring with non-uniform imposed B-fields: reflected fast electrons

\[B_{z0} = 0, \ E_{\text{beam}} = 173 \ \text{kJ} \]

more mirroring

\[B_{z0} = 50 \ \text{MG}, \ E_{\text{beam}} = 87 \ \text{kJ} \]

field type G, \[E_{\text{beam}} = 173 \ \text{kJ} \]

field type E, \[E_{\text{beam}} = 173 \ \text{kJ} \]

field type F, \[E_{\text{beam}} = 173 \ \text{kJ} \]

\[|J_{\text{beam}}| \ [\text{Amp/m}^2], \ t = 10 \ \text{ps} \]
Magnetic mirroring generalities (fully relativistic)

- \(\text{div } B = 0 \) implies \(B_r(r,z) = -(r/2) \frac{dB_z}{dz} \)
- Mirroring due to \(z \) force on a particle: \(F_z = q \mathbf{v}_\perp \times B_r \)
- Adiabatic limit: \(\left| \frac{1}{B} \frac{dB}{dt} \right| \ll \text{cyclotron freq.} \)
- Magnetic moment = adiabatic invariant: \textit{not} exactly conserved, but change is small
 \[
 \mu = \oint p_\perp \cdot d\mathbf{l} = \pi \frac{c}{e} \frac{p_\perp^2}{B_z} \quad \rightarrow \quad \frac{v_\perp^2}{B_z} = \text{const.}
 \]
 \[
 v_z^2 + v_\perp^2 = \text{const.} \quad \rightarrow \quad v_z^2 = v_{z0}^2 + v_{\perp0}^2 \left(1 - \frac{B_z}{B_{z0}} \right)
 \]
- Loss cone bad in MFE mirror machine, but good for us: these e- reach the fuel
 \[
 \text{loss cone: } \tan \theta_{0L} = \frac{v_\perp}{v_z} = \left[\frac{B_{z0}}{B_{z1} - B_{z0}} \right]^{1/2}
 \]
Mirroring with our electron source

Loss cone angle vs. mirror ratio

\[\tan \theta_{0L} = \left(\frac{B_{z0}}{B_{z1} - B_{z0}} \right)^{1/2} \]

mirror ratio = \(\frac{B_{z0}}{B_{z1}} \)

- e- source: \(\frac{d^2 N}{dE d\theta} = \frac{dN}{dE} \cdot \frac{dN}{d\theta} \)

\[\frac{dN}{d\theta} = \sin \theta \exp \left[-\left(\frac{\theta}{90 \text{ deg.}} \right)^4 \right] \]

Number in loss cone: \(F(\theta) = \int_{0}^{\theta} d\theta \frac{dN}{d\theta} \)

loss-cone fraction: \(\Phi = \frac{F(\theta)}{F(\pi / 2)} \)

Loss cone fraction of our \(dN/d\theta \)

vs. mirror ratio

\[\Phi = 0.65 \frac{B_{z0}}{B_{z1}} \]