Role of Electron Trapping in SRS on NIF Ignition Targets

D. J. Strozzi1, E. A. Williams1, D. E. Hinkel1, H. A. Rose2

1Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550, USA

2Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Talk FO4
Anomalous Absorption Meeting
Bodega Bay, CA, USA
19 June 2009

This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Supported by LDRD Project 08-ERD-017. Release number LLNL-PRES-413928.
Summary

• Electron trapping nonlinearity can either enhance (damping reduction or “kinetic inflation”) or saturate (e.g., frequency shift) SRS.

• Simple assessment of whether trapping is likely provided by “bounce number.”
 – Number of bounce orbits completed before detrapping by collisions or geometric loss.
 – Damping reduction and frequency shift develop smoothly as bounce number increases; no hard threshold.

• Bounce-number assessments of NIF ignition designs show:
 – Trapping is unlikely on the outer beams, where SRS is weak.
 – Trapping may affect SRS on the inner beams, and more so on Be than CH ablators.
Likelihood of electron trapping nonlinearity quantified by “bounce number” N_B

- **Electron trapping nonlinearities** (e.g., inflation, frequency shift, Langmuir-wave self-focusing) are effective only if the electrons resonant w/ plasma wave complete ~ 1 bounce orbit before being detrapped.

![Diagram of electron trapping process](image)

Important detrapping processes:
1. Speckle sideloss (geometric effect): $N_{B,sl}$
2. Collisions: electron-electron and electron-ion treated together: $N_{B,coll}$
 (SSD – way too slow to matter)

Bounce number:
$$N_B \equiv \frac{\tau_{de}}{\tau_B} = \frac{\text{detrapping time}}{\text{bounce period}}$$

Bounce period:
$$\tau_B \equiv \frac{2\pi}{\omega_{pe}} \sqrt{\frac{n_e}{\delta n}}$$

Joint bounce number:
$$N_B^{-1} = N_{B,sl}^{-1} + N_{B,coll}^{-1} \quad \text{Independent detrapping processes.}$$

i^{th} process:
$$N_{B,i} \equiv \frac{\tau_{de,i}}{\tau_B} = \left[\frac{\delta n}{\delta n_{\text{thresh},i}} \right]^{p_i}$$

Threshold:
$$\delta n = \delta n_{\text{thresh},i} \rightarrow N_{B,i} = 1$$

D. J. Strozzi: Anomalous 2009; p. 3
Rose calculation of nonlinear transit-time damping in finite speckle give $N_B \approx 1$ for significant damping reduction.

Transit time damping decreases faster in 2D than 3D

$$\frac{\nu_L(\phi)}{\nu_L(\phi = 0)} \approx G \left(\frac{\omega_b}{\nu_{\text{side loss}}} \right)$$

$$v_{\text{side loss}} \sim v_e / (\text{Langmuir wave scale length})$$

Transit time damping depends weakly on $k\lambda_D$

*With reduced damping a given high-frequency beat ponderomotive force drives a larger Langmuir wave, so N_B from the linear δn is an under-estimate.

D. J. Strozzi: Anomalous 2009; p. 4
Sideloss threshold: lower in 2D than 3D

\[N_{B,sl} = \frac{\tau_{sl}}{\tau_B} = K_{sl} \frac{L_{\perp}}{v_{Te} \tau_B} = \left[\frac{\delta n}{\delta n_{sl}} \right]^{1/2} \]

\(K_{sl} = (0.98, 0.48) \) in (2D, 3D)
(thermal Maxwellian leaving cylinder)

Speckle sideloss:

\[L_{\perp} \approx F\lambda_0 \]

\[\frac{\delta n_{sl}}{n_e} \equiv 1.33 \cdot 10^{-4} \left[\frac{8}{F} \right]^2 \frac{n_c}{n_e} T_{e,kV} \quad [3D] \]

Endloss also occurs, usually much slower:

\[\tau_{el} \sim \frac{L_{\parallel}}{v_{phase}} \quad L_{\parallel} \sim 5F^2 \lambda_0 \]

\[\frac{\tau_{sl}}{\tau_{el}} \sim \frac{1}{5F} \frac{v_{phase}}{v_{Te}} \ll 1 \]

Collisional thresholds: e-e and e-i treated together

\[\frac{\partial f}{\partial t} = \nu_{ei} \frac{\partial f}{\partial \mu} (1 - \mu^2) \frac{\partial f}{\partial \mu} + 2\nu_{eet} \frac{v_i^2}{v^2} \frac{\partial f}{\partial v} \left(f + \frac{v_i^2}{v} \frac{\partial f}{\partial v} \right) \]

\[N_{B,coll} = \tau_{coll} = \left[\frac{\delta n}{\delta n_{coll}} \right]^{3/2} \]

\[\frac{\delta n_{coll}}{n_e} \equiv \left[2\pi \ln 2 \frac{\nu_{ei} (v = v_T)}{\omega_p} \left(\frac{k\lambda_D}{3} \right)^2 \right]^{2/3} \]

For \(v_p >> v_{Te} \):

\[\tau_{coll} \approx \frac{28.4}{3 + Z_{eff}} n_e \lambda_{De}^3 \left(\frac{\omega}{\omega_{pe}} \right)^3 \frac{\delta n}{n_e} + O\left(\frac{v_p}{v_{Te}} \right)^2 \]

Depends on wave amplitude \(\delta n \), unlike sideloss

Trapping threshold for sideloss usually dominates collision threshold, but collisions can matter for high-Z, cold, low-density plasmas

\[
dN = \frac{dn}{n_e}
\]
Overview of trapping risk for NIF designs

- **outer beam, off peak**: Pierre Michel looked w/ SLIP closer to LEH than max gain (higher T_e, lower n_e, higher $k\lambda_{De}$); even less risk than on-resonance.
- **outer beam, peak**: SRS is linearly weak, stays below trapping threshold; nonlinearity not a concern.
- **inner beam, off peak**: assessed with ray-based DEPLETE code.
- **inner beam, peak**: Trapping may occur here, but does it inflate or saturate?

* **"Peak" SRS**: at scattered wavelength of max gain; we generally envelope around this in pf3d. Assessed by post-processing the Langmuir waves driven in pf3d.

* **"Off peak" SRS**: at wavelengths with lower linear gain; less SRS expected, but a pf3d run won’t include it unless we envelope around an off-peak wavelength.

D. J. Strozzi: Anomalous 2009; p. 8
Outer beam peak SRS: pf3d run of 50 deg. beam, $T_{\text{rad}} = 285$ eV, Be ablator, at 12 ns (peak power)

pf3d SRS reflectivity $\sim 10^{-6}$

Off-peak outer beam:
Examined by Pierre Michel w/ SLIP, trapping even less of a concern.
Outer beam peak SRS: bounce number $<< 0.5$ almost everywhere: trapping is not a concern (same results for CH design)
Off peak inner beam SRS: bounce number assessment shows little risk for kinetic inflation

Off-Peak Bounce Number Analysis from DEPLETE

“Peak” Bounce Number from pF3D simulations

CH capsule (300 eV)

Be capsule (285 eV)

Inner beam peak SRS: post-process pF3D run of CH ablator, 300 eV radiation temperature, LEH liner

Escaping SRS Light

Conditions on longitudinal (yz) plane, 82 ps

Pump laser intensity
SRS light intensity
Langmuir wave $\delta n/n_e$
CH ablator case: conditions at run end (82.4 ps)

Bounce number, longitudinal plane

transverse-averaged bounce number (laser weighted)

transverse-averaged laser power (a.u.)

Fraction of scattered coupling ($E_{\text{las}} \cdot \delta n^*$) above a bounce number, $z = 0.47$ cm
Comparison of CH and Be ablators: more SRS, and more trapping risk, in Be

Fraction of scattered coupling (Elas•dn*) above a bounce number, over xy plane

Bounce number at z = 63 cm
Summary and Future Work

• “Bounce number” provides a simple assessment of whether electron trapping nonlinearity can overcome detrapping processes (sideloss, collisions).
 – Sideloss is usually the dominant detrapping process.

• SRS on NIF outer beams seems below trapping threshold.

• SRS on NIF inner beams are more worrisome; designs with CH ablators less so than Be.

• A reduced model is needed to quantitatively study trapping effects: does it enhance SRS (inflation) or saturate it?

• Work is underway to implement such a model in pF3D, and benchmark it against kinetic simulations (R. Berger, H. Rose, D. Strozzi).
1D Vlasov simulations with Sapristi\(^1\) of driven EPW’s in LEH conditions: departures from linear theory, even though \(N_B >> 1\)

Homogenous, periodic plasma:
\(n_e/n_{\text{crit}} = 0.07\) \(T_e = 5\) keV;
\(\nu_{\text{Krook}} = 4.3E-4\omega_{pe}\) (sideloss for \(L_{\text{perp}} = 100\) um)

Krook relaxation:
\[
\partial_t f |_{\text{Krook}} = \nu_K \cdot (n\hat{f}_0 - f)
\]

Bounce number in linear field >> 1
\[
N_B = \frac{\omega_B}{2\pi \nu_K} = 14.3
\]

Distribution for \(k\lambda_{De} = 0.54\), \(t\omega_{pe} = 750\): phase-space vortices; x-avged \(f\) flattened

\(^1\) S. Brunner, E. J. Valeo, PRL 93, 145003 (2004).
Reduced model by H. Rose, for Langmuir waves of finite transverse size

Damping reduction: \[
\frac{v}{v_{\text{Landau}}} = f + 0.4(1-f) \frac{v_{\text{esc}}}{v_{\text{Landau}}} \quad f = \exp\left[-\ln 2 \cdot \left(\frac{2\pi}{3(D-1)}\right)^2 N_B^2\right] \quad D = \text{dimensionality} = 2, 3
\]

Frequency shift: \[
\frac{\delta \omega}{\omega_B} = -0.88 \left(\frac{v_p}{v_{Te}}\right)^3 f_{mwx}''(v_p/v_{Te}) \cdot (1-f) \quad \frac{v_{\text{esc}}}{v_{\text{Landau}}} \sim \frac{v_{Te}}{L_\perp} \quad \text{Depends on } k\lambda_D, \text{2D/3D}
\]

Benchmarked by transit-time damping and PIC calculations.
DEPLETE1 performs ray-based, steady-state backscatter calculations

\[
\frac{d}{dz} I_0(z) = -\kappa_0 I_0 - I_0 \int d\omega_1 \frac{\omega_0}{\omega_1} (\tau_1 + \Gamma_1 i_1)
\]

\[
\frac{\partial}{\partial z} i_1(z, \omega_1) = \kappa_1 i_1 - \Sigma_1 - I_0 (\tau_1 + \Gamma_1 i_1)
\]

\text{inv. brems. damping} \quad \text{brems. source} \quad \text{Thomson scattering} \quad \text{SBS/SRS coupling}

\textbf{The code DEPLETE does:}
\begin{itemize}
 \item use 1-D plasma conditions from 3-D ray-trace
 \item handle a spectrum of scattered frequencies
 \item use a strong damping limit plasma-wave
 \item deplete the laser pump
 \item use Thomson scatter/bremsstrahlung noise sources
 \item inverse-bremsstrahlung light wave damping
 \item use linear kinetic coupling coefficients
 \item include collisional damping of Langmuir waves
 \item model whole-beam focusing
\end{itemize}

\textbf{The code DEPLETE does not:}
\begin{itemize}
 \item include temporal effects
 \item include laser speckle effects
 \item include multi-D effects
\end{itemize}

D. J. Strozzi: Anomalous 2009; p. 18