DEPLETE - a code for rapid assessment of backscatter activity

D. J. Strozzi, E. A. Williams, D. E. Hinkel

Lawrence Livermore National Lab (LLNL), Livermore CA 94550

37th Anomalous Absorption Meeting
27 August 2007

UCRL-PRES-233924
Hierarchy of Laser-Plasma Interaction (LPI) codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWLIP</td>
<td>Linear kinetic gain calculation along 1-D ray profile; steady-state.</td>
</tr>
<tr>
<td>DEPLETE</td>
<td>Like NEWLIP, but solves for pump and scattered intensities with 1-D model of thermal fluctuations.</td>
</tr>
<tr>
<td>SLIP</td>
<td>3-D, steady-state, kinetic coefficients.</td>
</tr>
<tr>
<td>pF3D</td>
<td>Laser propagation; enveloped laser and daughter waves; time evolution; 1-, 2-, or 3-D (patch, letterbox, whole beam, ...).</td>
</tr>
<tr>
<td>Kinetics</td>
<td>Full plasma physics (but small volumes).</td>
</tr>
</tbody>
</table>

DEPLETE calculates the laser and backscattered intensities, in steady state, along a 1-D ray profile. It solves for a set of scattered-wave frequencies, with physical noise and pump depletion. Kinetic formulas are used for coupling and Thomson.
NEWLIP: finds linear backscatter gains for rad-hydro simulations; quick-and-dirty estimate

- NEWLIP - Yorick code by E. A. Williams; finds gain \(G(\omega_1) \) along many (~hundreds) of rays, to *quickly* assess target’s backscatter risk.

\[
\partial_s i_1(s, \omega_1) = -\alpha i_1 \quad \alpha \equiv \frac{1}{4} \frac{f}{\eta_0} \frac{v_{os,0}^2}{c^2} \frac{k_2^2}{|k_{1p}|} \sum \chi_e \left(1 + \chi_I \right) / \epsilon
\]

\(s = \) distance along ray path;

\[
I_1 = \int d\omega_1 i_1
\]

Solved for many \(\omega_1 \)'s.

\[
\chi_I = \sum_{i=\text{ions}} \chi_i \quad \chi = \chi_e + \chi_I = \text{susceptibility} \quad \epsilon = 1 + \chi = \text{dielectric}
\]

- Plasma waves in the strongly-damped limit:

\[
\frac{n_2}{n_e} = \frac{1}{2} \left| \frac{\chi_e}{\epsilon} \right| \left(k_2 \lambda_{De}^2 \right) \frac{v_{os,0} v_{os,1}}{v_{Te}^2}
\]

\[
n_{2e} = (1 + \chi_I) n_2
\]

- Linear gain:

\[
i_1(s_L) = i_1(s_0) e^G; \quad G \equiv \int_{s_0}^{s_L} ds \ \alpha(s)
\]

Linear gain \(G \) is the main “product” of NEWLIP.
DEPLETE equations: solve for pump and scattered intensities

\[
\begin{align*}
\partial_s I_0(s) &= -\kappa_0 I_0 - \int d\omega_1 \frac{\omega_0}{\omega_1} I_0 \cdot (\tau_1 + \Gamma_1 i_1) \\
\partial_s i_1(s, \omega_1) &= \kappa_1 i_1 - \Sigma_1 - I_0 \cdot (\tau_1 + \Gamma_1 i_1)
\end{align*}
\]

- **inverse bremsstrahlung:**
 \[\kappa_i \equiv \frac{\omega_{pe}^2 \nu_{ei}}{\omega_i^2 \nu_{gi}}\]
- **brem. noise:**
 \[\Sigma_1 = \int f^{-1} \Omega_c \kappa_1 \frac{v^2_i}{c^2} B_v\]
- **Thomson coupling:**
 \[\tau_1 \equiv \frac{K_T}{|\epsilon|^2}, \quad K_T = \frac{\Omega_c}{\sqrt{2\pi}} n_e r_e^2 \omega_0 \frac{g_T}{\omega_{pe} k_2 \lambda_{De}}\]
- **Coupling:**
 \[\Gamma_1 = \frac{K_G}{|\epsilon|^2}, \quad K_G \equiv f \frac{2\pi r_e}{m_e c^2} \frac{1}{\omega_0} \frac{k_2^2}{k_{0p} |k_{1p}|} g_G\]

scattered light

\[\Omega_c \equiv 2\pi (1 - \cos \theta_c) \approx \frac{\pi}{4F^2}\]

F-cone:
\[\cos \theta_c \equiv \left[1 + \frac{1}{4F^2}\right]^{-1/2} \approx 1 - \frac{1}{8F^2}\]

whole-beam focusing:
\[f \equiv \frac{\text{area}(s)}{\text{area}(s_{focus})}\]

Intensities are: \[\text{[total power in ray]} / \text{[focal spot area]}\].

- **Bremsstrahlung:**
 \[\nu_{gi} = \text{blackbody}\]
- **Thomson:**
 \[B_v = \text{blackbody}\]
- **Coupling:**
 \[1 + \chi I |\chi_e|^2 e^{-\zeta_e^2} + |\chi_e|^2 \sum_i \frac{v_{Ti}}{v_{Te}} e^{-\zeta_i^2}\]
DEPLETE numerics: shoot on I_0 (s=wall), split step

- **Shooting:** Two-point boundary-value problem. March from wall to LEH, varying I_0 (wall) until $I_0 (LEH)$ is close enough to known value.

 - **Split step:**

 $\begin{bmatrix} I_0^{n-1} \\ i_1^{n-1} \end{bmatrix}_{s_{n-1}} \rightarrow \begin{bmatrix} I_0^n \\ i_1^n \end{bmatrix}_{s_n}$

 \[
 [I_0, i_1]_{s_{n-1}} = B_{1/2} \cdot C_1 \cdot B_{1/2} \cdot [I_0, i_1]_{s_n}
 \]

 $B_{1/2} =$ bremsstrahlung for a half-step:

 \[
 \partial_s I_0 = -\kappa_0 I_0 \\
 \partial_s i_1 = \kappa_1 i_1 - \Sigma_1
 \]

 $C_1 =$ coupling-Thomson for whole step:

 \[
 \partial_s I_0 = -\int d\omega_1 \frac{\omega_0}{\omega_1} I_0 \cdot (\tau_1 + \Gamma_1 i_1) \\
 \partial_s i_1 = -I_0 \cdot (\tau_1 + \Gamma_1 i_1)
 \]

 Run time dominated by evaluating Z functions, not ODE solving (even with shooting).
Coupling-Thomson step: Analytical solution for narrow resonances

Coupling-Thomson step over a single s cell: hold I_0 constant, solve for i_1 for every ω_1, then update I_0 conservatively (Manley-Rowe).

\[
\partial_s i_1 = -I_0 \cdot (\tau_1 + \Gamma_1 i_1)
\]

\[
\Gamma_1 = \frac{K_T}{|\epsilon|^2} \quad \tau_1 \equiv \frac{K_{\tau}}{|\epsilon|^2}
\]

- **Problem:** narrow resonances in coupling and Thomson coefficients hard for standard ODE solvers (e.g. Runge-Kutta).

- **Solution:** The resonance occurs when Re[ϵ] = 0 in the denominator; ϵ itself varies slowly, so linearize ϵ in a cell and analytically solve.

\[
\epsilon \approx \epsilon^{n-1/2} + \partial_s \epsilon^{n-1/2} \cdot (s - s_{n-1/2})
\]

\[
\partial_z i_1 = -\frac{B_\tau + B_\Gamma i_1}{1 + z^2}
\]

\[
i_1^{n-1} = (i_1^n + \beta) e^{B_\Gamma \Delta \omega} - \beta
\]

\[
\beta \equiv \frac{B_\tau}{B_\Gamma}
\]

\[
\Delta w \equiv \tan(\omega_n) - \tan(\omega_{n-1})
\]

E. A. Williams uses a similar technique for finding gains in NEWLIP ("ratint").
Properties of DEPLETE

- Fast! Almost as fast as NEWLIP. Most time spent evaluating kinetic Z functions.
- Works along 1-D ray profiles (rad-hydro usually treats lasers via rays).
- 1-D noise: 3-D bremsstrahlung noise taken over beam F-cone.
- Gives scattered-wave intensities:
 - Measurable, unlike gain.
 - Allows for assessment of nonlinearities (e.g. trapping, LDI, inflation).
 - Re-absorption of scattered waves done.
- Pump depletion included.
- Kinetic description - same as NEWLIP, better than pF3D (some fluid approximations).
- Different scattered frequencies ω_1 handled simultaneously:
 - No enveloping around a carrier wave, as in pF3D.
 - Different ω_1’s treated incoherently (no spectral leakage; physical?).

- DEPLETE lacks some physics in pF3D:
 - Steady-state - no time evolution.
 - 1-D: no transverse gradients, beam intensification.
 - no speckle physics, no beam smoothing (but we have ideas).
 - no plasma-wave advection (strong damping limit).
 - DEPLETE model not strictly valid for absolute instability.
Tests of DEPLETE on “clean” profile: linear gradients, just SRS

pF3D run: 3-D plane wave; no transverse pump structure like speckles.

Graphs:
- n_e/n_c vs. s (cm)
- Te (keV) vs. s (cm)
- SRS reflectivity vs. l_0 (10^{15} W/cm2)

$L_0 = 8.7 \times 10^{14}$
“Clean” profile test: scattered-light spectrum from pF3D and deplete have similar shape

In the linear regime, the spectra are quite similar.

\[I_0 = 3 \times 10^{14} \]

In the saturated regime, pF3D has more pump depletion, less scattering from high density.

\[I_0 = 1.17 \times 10^{15} \]
“Clean” profile test: NEWLIP gain vs. DEPLETE boost

- Increases confidence in gain, and is a “sanity check” on DEPLETE.
- But NEWLIP doesn’t give intensities.

\[
\text{DEPLETE "Boost"} = \log\left(\frac{\text{scattered spectrum with brem., Thomson, and coupling}}{\text{scattered spectrum with just bremsstrahlung (i.e. no laser)}}\right) = \frac{\text{"backscatter"}}{\text{"noise"}}
\]

\[
I_0 = 6 \times 10^{14} \text{ W/cm}^2 \\
I_0 = 1 \times 10^{15} \text{ W/cm}^2 \\
I_0 = 1.34 \times 10^{15} \text{ W/cm}^2
\]

- Boost > gain due to Thomson
- Boost < gain due to pump depletion (and some absorption)

D. J. Strozzi: Anomalous Absorption 2007: p. 10
Sample profile: inner beam (23 deg.) Be ray, 270 eV point design at time of peak laser power

$\frac{n_e}{n_c}$

LEH wall

Transmission

solid: pump with
inv. brem. +
pump dep.

dashed: pump with just
inv. bremsstrahlung

SRS
SBS

escaping
SRS, SBS

i$_1$ SRS (log scale)
i$_1$ SBS (log scale)

$\frac{i}{i_0}$

λ_1, λ_0 (A ng)
DEPLET and NEWLIP gain have similar reflected-light spectra

$$\text{DEPLET} \quad \text{“Boost”} = \log \left[\frac{\text{scattered spectrum with brem., Thomson, and coupling}}{\text{scattered spectrum with just bremsstrahlung (i.e. no laser)}} \right] = \frac{\text{“backscatter”}}{\text{“noise”}}$$
DEPLETE and pF3D patch agree pretty well (on a log scale); speckle effects may enhance SRS

pF3D patch: “ray with speckles:” 3D, whole ray path, a few speckles in transverse directions.

pF3D has more SRS: probably due to higher gain in high-intensity speckles.
pF3D has less SBS: probably due to more pump depletion.

The decent agreement of DEPLETE and pF3D scattered intensities validates DEPLETE’s 1-D model of 3-D noise.
The plasma-wave amplitude predicted by DEPLETE can be compared with nonlinearity thresholds

\[\frac{n_2}{n_e} = \frac{1}{2} \left| \frac{\chi e}{\epsilon} \right| \left(k^2 \lambda_D e \right)^2 \frac{v_{os,0} v_{os,1}}{v_{Te}^2} \]

\[\frac{n_2}{n_{e0}} = \left[\int d\omega_1 \delta_2 \right]^{1/2} \]

\[\tau_B \omega_{pe} = 2\pi \left[\frac{n_{e0}}{n_2} \right]^{1/2} \]

SRS electron plasma wave: too weak for trapping nonlinearities
Conclusions and Future Prospects

Conclusions:
• DEPLETE provides a 1-D, steady-state, ray-based, linear kinetic calculation of backscatter:
 – Pump depletion, re-absorption, 1-D physical noise included.
• Compares well with NEWLIP gains.
• pF3D comparisons are promising; need to include speckle effects in DEPLETE for better agreement.

Future prospects:
• DEPLETE can be incorporated into rad-hydro codes:
 – ray-based (just like rad-hydro) and computationally fast (~secs. per ray).
 – An effective absorption coefficient, calculated from the DEPLETE solution (including scattered and plasma wave intensities) can replace the bremsstrahlung damping rate in the rad-hydro code.
• DEPLETE gives plasma wave intensities, which can be compared to nonlinearity thresholds (Langmuir decay instability, trapping, kinetic inflation, Langmuir wave self-focusing).
• Hot electron production can be estimated as well.
• DEPLETE can indicate regions where kinetic simulations may be especially illuminating.