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Coherent acceleration of magnetized ions by electrostatic waves
with arbitrary wavenumbers
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This paper studies the coherent acceleration of ions interacting with two electrostatic waves in a
uniform magnetic fieldB,. It generalizes an earlier analysis of waves propagating perpendicularly
to By to include the effect of wavenumbers aloBg. The Lie transformation technique is used to
develop a perturbation theory describing the ion motion, and results are compared with numerical
solutions of the complete equations of motion. Coherent energization occurs when the
Doppler-shifted wave frequencies differ by nearly an integer multiple of the ion cyclotron
frequency. When the difference in the parallel wavenumbers of the two waves is increased the
coherent energization of ions is limited to a small part of the phase space. The energization of ions
and its dependence on wave parameters is discusse@008 American Institute of Physics.
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I. INTRODUCTION condition w;—w,=Nw,; Ram etal. discovered

. . . numerically™ that coherentas opposed to chaojienergiza-
The motion of charged particles in the presence of elec-. )}. . ¢ pposed to I 9 .
. . : . tion can bring ions from low energies into the stochastic
tromagnetic waves is a rich dynamical system that has been : o 12 .
. . . .~~~ “domain. Baisti et al** then showed that this coherent ener-
studied for a variety of cases. Important physical applications .

. , ization was described by perturbation analysis using Lie
of this problem occur in laboratory and space plasmas, suct f i thods. Th h { ati |
as for high-temperaturécollisionles$ plasma heating and ranstormation methoas. the coherent energization was aiso

current drive and the transverse energization of ions foF‘hOWn by Ramet al.™ to be described by a multiple time

times short compared to collisional times. A particular aregocale analysis, and invoked to explain the energization of

of interest is the nonlinear heating of iokas opposed to nydrogen and oxygen ions from Earth's upper auroral iono-

linear mechanisms such as Landau and cyclotron dampingPhere into the magnetosphere. For two non-collinear, per-

by electrostatic waves propagating through a plasma in pendicularly propagating waves, the coherent energization

uniform magnetic field3, was found to persist as long as the angle between them was
- . . a4
For a single electrostatic wave propagating acidgs €SS than 30% _ _ _
the stochastic heating of ions by waves with frequency Coherent acceleration by electrostatic waves with
>we but w#Nw, (where N is an integer andwy; —w,=Nuw; can only occur when both wave frequencies are

=(qBy/M is the ion cyclotron frequengywas studied by larger thanw¢;. This process is most interesting for cases
Karney and Ber$:? It was found that ions with speeds acrosswhere ions with energy well below the stochastic region
B, less than the phase velocity of the wawék, (that is, (K. pi<w/w;) are accelerated into it. Most of the work on
k, pi=wlw.;) exhibit regular motion and do not gain energy. coherent acceleration has focused on waves with frequencies
However, for wave amplitudes above a threshold amplitudemuch higher thanw;. In magnetic fusion experiments and
the ions are stochastically heated if their speeds are insideia the Earth’'s ionosphere, lower-hybrid waves fit this de-
region with a lower bound neaw/k, . The stochastic scription (o~ w,i>we, op=lower-hybrid frequency,
“webs” generated by a single perpendicularly propagatingwp=ion plasma frequengy
wave with frequencyw=Nw¢; also lead to stochastic ion In this paper we study the interaction of ions with elec-
heating®~® trostatic waves ranging in frequency from lower-hybrid fre-
For a single wave propagating obliquely By it was  quencies down to a few multiples @f;;. The analysis of
found that ions could also be stochastically hedtétt.has  Bénisti et al!? is generalized to include nonzero wavenum-
recently been shown that single and multiple drift-Alive bers alongB,. We develop a perturbation theory using the
waves withw < w; can induce stochastic ion heatifigiich  Lie transformation method and find conditions for which co-
may account for certain experimental observatidbRsr two  herent acceleration persists. We also discuss the dependence

waves propagating obliquely 8, the threshold wave am- of the range of energization and period of coherent oscilla-
plitudes needed for stochastic motion can be significantlfjons on wave parameters.

region of phase space. _ Sec. Il. An analytic perturbation theory for the coherent mo-
For two perpendicular waves that satisfy the resonanc@on pased on the Lie transformation technique is described

in Sec. lll. Section IV compares the results for the perturba-

dElectronic mail: dstrozzi@mit.edu tion theory with numerical results obtained from the com-
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plete dynamical equations. The scalings of coherent energi- 100
zation and the period of oscillation, for perpendicularly
propagating waves, are obtained. Section V discusses the 8ol
case of obliquely propagating waves and compares the re-
sults with those for two perpendicularly propagating waves. ek
Q
40t
Il. EQUATIONS OF MOTION
The nonrelativistic equation of motion of an ion in the 201
presence of a uniform magnetic fieR)=B,z in a plasma
and interacting with two electrostatic waves is 0 :
0 1 2 3 4 5
2
2 t x10°

d“x
M— =02, Oik; sin(ki-x—wit+a) +quXBy, (1)
dt =1 FIG. 1. p vst for three ions interacting with two perpendicular waves from
the full HamiltonianH (5). Quantities in all figures are given in terms of the
where @, is the electrostatic potential amplitude, is the  normalized units defined in the text. The initiab=15.95 €= po/v;

wavevectorw, is the wave frequency, ang is the phase of =0.4) for all three ions while their phases afg=(—0.3,0.2,0.4)r for ions

the ith wave. We normalize times to the inverse of the ionlabeled 1, 2, and 3, respectively. The parameters for the two waves,are:
) : : =e,=4, kiy=kp=1, ky,=ky,=0, v;=40.37, andv,= v, — 1.

cyclotron frequency,;, distances to the inverse kf,, and

masses to the ion madd. We restrict our attention to the

case where botlk;’s lie in the x—z plane. Letv,=w;/w;

and €=(wg;/w)? Where wg=(qk?,®;/M)*? is the We transform k', p,) to action-angle coordinatesp(l)
bounce frequency in thith wave. The Hamiltonian for this using the generating functiorF;=3x'2 cot¢. Then |
system is =3(vi+x'?)=3(v2+0v)) is the perpendicular kinetic en-

1 ergy, and¢ = arctang’/v,)=arctan{-v /v,) is the gyrophase.
h(Xap,t)=§(p—A)2+Ei e cogkix—wmtta), (2) The transformed Hamiltonian is

H(¢,z,1,v,,t)
where A=Byx¥y is the vector potential, angg=mv+qA

—V+x¥ is the (nondimensionalcanonical momentum. L1 _ e o _
Sinceh is independent of, we can eliminate thg de- _I+sz+§i: & costkixp sing +kiz—vitta), (5

gree of freedom by making a Galilean transformation to a

frame moving in they direction with speedp,o=vy,o+x,  Wherep=12I is the ion gyroradius.

(the subscript O refers to a quantity’s initial vaJuEollowing

Ref. 15, the generating function for the canonical transfor-

mation from §/,p,) to (y',py) is F2=(y—Pyot)(Py*+Pyo)- ||| PERTURBATION ANALYSIS OF COHERENT
Theny’=y—pyet and py=p,—pyo, SO thatpy,=0. The  \oTION
transformed Hamiltoniaito within a constantis
In general, the equations of motion obtained fr¢sh
h(X,Z,Px. Py .P2,t) =3[ PZ+Py?+ (X—Pyo)*+ p] cannot be solved analytically. Consequently, we resort to nu-
merical solutions to provide an insight into the dynamics of
+> € cogk;-x—vit+a;). (3) ions in two electrostatic waves. Figure 1 shows the time
' evolution ofp for three ions having the same initig, but
different ¢, interacting with two waves of frequencies
=40.37 andv,=39.37, and amplitudes, = e,=4. (All the
numerical solutions of ordinary differential equations have
been carried out using the Bulirsch—Stoer algorithm de-
h'(X',Z,Py,05,t) = 2(p2+Xx'2+02) scribed in Ref. 16.There are two distinct kinds of motion:
the slow, smooth, “coherent” oscillations at lowey and the
irregular, “stochastic” motion at highes. Superimposed on
the coherent motion are small-amplitude, high-frequency
fluctuations. Figure 2 shows the orbits for the same param-
wherea;+Kixpyo is replaced bye; . eters as Fig. 1 except that=39.369 and the initial condi-

In a frame moving with velocityuz the Hamiltonian tions are different. This demonstrates that the coherent accel-
remains unchanged except that the wave frequencies aszation from low to high energies occurs only when- v,
Doppler shifted;— v; —k;,u. Without loss of generality we is an integer.
assume that,,=0 and consider the effects of, on ob- Our interest is to provide an analytical description of the
lique propagation in Sec. V. coherent dynamics without going into details of the stochas-

Sincedh’/dy’ =0, p, is independent of time so thaf=0.
This eliminates thg’ degree of freedom from the dynamics.
Replacingx by x" =x—p,o andp, by v, gives

+E € cogk X' +ki,z—vit+a;), (4
I
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FIG. 2. p vst for the same parameters as in Fig. 1 exceptpgat15.95, 30,
45 andv,=v,;—1.001.

tic region, other than to note its existence formin(y).}?
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€162 ,
S == ———(kiy(m=N)Jp, 1 Imnp2
4p(M—pq)
' €1€2 '
+komMIn 1 Im-n2) — ——— (KpMIn 2Imin2
4p(M—pu,)

+Kox(M+N)Jj 2Imin.1), (14

1 Jm1dm— J
S—z:ZklszZflfz m,1~m N,22 m,2‘Jm+ N,Zl , (15)

(M=py)= (M= puy)

Ak, = (k1,— ky,), i = vi—K;,v,, andmis summed from-cc

to +o. I i =Jm(kixp) is the Bessel function of the first kind
andf’(&)=df/d¢é. The barred coordinates are related to the
original coordinates by a near-identity transformation:
(¢,2,1,v,=(¢,z,1,v,)+0(€) (Appendix A). For instance,
the relation betweehand| is

_ mJd.. _
le_éiE m! COS(m(ZS‘f'kiZ?_Vit"‘C!i).

16
We assume that the waves are perturbing the cyclotron mo- mo M= 19
tion of the ions and express _
The HamiltonianH is a generalization to oblique waves of
H=Hy+Hq, (6)  the results obtained in Ref. 12 for collinear perpendicularly
propagating waves. In the limit,— 0 the above reduces to
where the description in Ref. 12. A nonzerg — «, is equivalent to
Ho=1+ %2, a shift in the initial¢g so that, without loss of generality, we
) can seta;=a,=0.

H1=E € cogkip sin p+ki,z— vit+ ;).
|

An approximate analytical description of the ion motion in

Our perturbation analysis assumes there are no reso-
nances aD(e). Such resonances occurif is an integer,
where our present analysis breaks down.

The explicit time dependence i can be eliminated by

the coherent regime is obtained by using the Lie perturbationﬂansforming frome to Z: g_t using the generating func-

techniqué”® with the ordering parameter (e~ e;~ ).
We assume that; ¢ Z but (v1—v,)=NeZ. Fory,eZ a

tion F2=T($—t). The transformed Hamiltonian is

web structure is formed in phase space and has been diﬁ(@?v_z)=%v_2+ So(1,05)+S_(1,0,)cog N+ Ak,2)
1 1 1 Z 1 - ) 1

cussed elsewhere for a single whwand for two waves
propagating acrosB,.'° For the case of a single wave the

stochastic web structure also has a lower botind.

From the Lie perturbation analysi®ppendix A the
Hamiltonian that describes the coherent ion motio®{@?)
is

H(¢,z,1,0,,t)=1+22+H,, (8)
where

Ho=So(1,0.) +S_(1,0)c0g N(¢p—t) + Ak Z+ a1 — ay),

9
So=Sox+ Soz» (10
1 X ,
SOXZ—Z—;EI k|X€i 7Jmi‘]m,i’ (11)
1 2 Jﬁwi
SOz:Z EI kiz€i (m_,;Li)Z’ (12
S =S ,+S ,, (13

17

wherel =T has replaced (I and are canonically conju-

gate. SinceH does not depend explicitly on time it is a
constant of the motion.

Using Hamilton’s equations fd_randb_z, we find a sec-
ond constant of the motion:

d[_ Ak,

Thus, the system is integrable and the dynamics described by

H are not stochastic. Along an orbi, is a function ofl and
initial conditions only:

_ Ak, —

Uz:UzO+W(I_|O)- (19

Therefore,S, and S_ are functions just of . Since|cosx|
<1
H_<Hs<H,,

Ho(D=%2+S(H=[S_(I)]. (20)
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FIG. 3. p vst from the coherent HamiltoniaH (17) for the same param- FIG.5.H. /H,(£=0) vs¢=plv, for N=1 andv,;=10.37(solid line) and
eters as in Fig. 1. SR indicates the stochastic region for the full Hamiltoniany,=70.37(dashed ling €,= e,=arbitrary,k,,=k,,=1, andk,,=k,,=0.

For an initial condition with a given value dfi, p varies conditions. The coherent analysis correctly predicts that par-

between the two points whefé equalsH , (p) or H_(p). ticle 3 in_Eig. 1 will not make it int_o the chaotic regime
We refer toH.. as the potential barriers, since they delimit Pcause it is reflected by the bumphin. . ~
the allowed and forbidden regions of phase space. If we multiply €, and e, by the same factoa thenH in
Figure 3 shows the orbits generated by the second-ordé7) is multiplied bya® (note that for perpendicularly propa-
Hamiltonian(17) for the same parameters as in Fig. 1. Ourgating wavesé?f is a constant and can be eliminated from
perturbation analysis accurately captures the coherent motidd). Since a rescaling of the Hamiltonian is equivalent to a
of the full system except near the stochastic regjon rescaling of time, rescaling both’s does not affect the
~min(y) where our perturbation theory breaks down. Belowrange of motion inp but rescales the period byaf/ For
this region,p andp differ by small fluctuations that are ac- ¢,~¢,, this means the period scales likes2/ This reflects

counted for, toO(e), by the transformatior16). the fact that the coherent motion is second order in the wave
field amplitudes. It also shows that in certain physical situa-

IV. COHERENT MOTION FOR PERPENDICULAR tions, at sufficiently large amplitudes, the effects of collisions

WAVES on the coherent energization can be made negligible.

Using the Hamiltoniarid | the i The range of coherent motion im scales linearly with
sing the Hamiltoniar{17) we now analyze the ion mo- the wave frequencies. In Fig. 5 we plbt. /H,(£=0) vs

tion for two perpendicularly propagating waves. Figure_s 1 — 57w, for two values ofy, with N=1. Note that the po-
and 3 show the_complete and cqherent motion, res_pect|vel ential barriers do not change significantly with. Figure 6
for _two perpendicularly propagating wavelg,(=0). Figure shows that, as a function of,, the averaget,, and &,
,4 d|§playsH+ andH . from (20) for tbe same paramgt(.er.s a5 have a small variationgyi, and &, are the maximum and
in Figs. 1 and 3, and the values bff for the three initial

0.8f e émax )
0.6}
wn
04}
Conee {;min
0.2t
O n n L L
0 20 40 60 80
1 1 1 1 v1
0 10 20 30 40
P FIG. 6. Averaget,, and &y VS v, for perpendicularly propagating waves

. based on the barrierkl.. . Parameters are as in Fig. 5 except that
FIG. 4. H, andH_ vs p for the same parameters as in Fig. 1. The initial =(3,37,4.37...,80.39, £=0.4, and the average is overg,

values ofH for the three ions in Fig. 1 are marked by the open circles.  =(0,0.05. .. ,1)x.
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FIG. 7. The period of coherent oscillatianvs ;. The other wave param- FIG. 8. p vs t for the same parameters as in Fig. 1 except that
eters are the same as in Fig. 1. The initial conditions&re0.4 and ¢, ki =kg,=1.
=(0.2,0.6)r. The open circles and stars are the periods obtained from in-

tegrations of the dynamics given by The solid lines are proportional :q‘
with the constant of proportionality chosen to match the periodvsat
=40.37. The vertical axis is scaled so thétis a straight line.

V. COHERENT MOTION FOR OBLIQUE WAVES

In this section we describe the motion of ions when the
waves have nonzero parallel wavenumkgr. This couples

minimum & attained by an ion undergoing coherent motionthe parallel dynamics to the perpendicular motion.
and occur when the ion reaches the barriérs). The aver- For ions with initialv ,0=0 interacting with asingleob-
age is over ions with the same initigh=0.4 and different lique wave, the motion is stochastic wiien
$0=1(0,0.05...,1)7. Waves with higher frequencies can
2 . . 1

th_erefore produce coherent energization to_ hlgher energies. \/|Jn0(p)|+ \/|Jn0+1(p)|> ,
Since the lower bound of the stochastic region gds 2kz\/z
~min(u;)—¢~1, ions with the same initiad, and ¢ either  \ heren is the greatest integer less than For ng>1, the
will or will not reach the stochas'Flc region rggardless of the;ower bound of the stochastic region is
wave frequencies. Far; near an intege€,,., is about 20%
higher than when; is near a half-intege(this is not shown
explicitly in Fig. 6). p

The period of oscillation in (see Fig. 3 can be esti-
mated from the equation of motion for

(24)

0.15
~ng+ ——n3*—1.1n}". (25)
€

As for a single perpendicular wave, the lower boungbiis
roughly the wave frequency and decreases witlThe sto-
| o chastic region irv, extends fronmv,~0 tov,~2v.
|=——==NS_sin(N¢). (21 For two waves Eq.(19) shows thatv, changes only
I when Ak,#0. Thus, the caseAk,=0 andAk,#0 lead to

An orbit’s turning point typically occurs wheﬁ=nw/N, different dynamics and are treated separately.

i.e., when it hits one of the barriend... Therefore, ap-
proximately, the period of oscillationr is given by 7

wa/(N(E}), where( ) denotes the average over one pe- aD
riod. From the asymptotic forms @&, andS_ for v;~v,
>1 (Appendix B we find that 60| 3

H~v1 %ha(&, 1), (22) ol 2
whereh, depends on; only throughé. Then >"

~ 20 -
-— oH dh 1 0h
-2 a —4 a
=—==~yp ==y . (23 V
T T PE 0 |
]

Thus, 7~ v‘l‘. Waves of lower frequency accelerate ions
much more rapidly than those with higher frequency and 20 0 0'5 1 1'5 2 2'5 3
thus may also be made less sensitive to the effects of colli- ' ¢ ' 5
sions. Figure 7 compares this scaling with the periods of two x 10
actual orbits obtained frorhl. FIG. 9. v, vst for the same parameters as in Fig. 8.
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FIG. 10.H. /H (p=0) vsp for k;,=k,,=0.1(dotg and 1(dasheg Other

parameters are as in Fig. 8. The curvesKgr=0 are very close to those G- 12. p vs t for the same parameters as in Fig. 1 except that
for klZ: 0.1. k12:0.001 and<22:0.

Emin Emax for different ky,. Increasingk;, slightly lowers

&max Since the enhanced bump H_ reflects more ions.
Figures 8 and 9 show the time evolution@andv, for  Generally then, significant coherent energization and access

two waves propagating at an angle of 4%,Eki,=1) to  to the stochastic region is obtainable with oblique waves

Bo. As in the case of two perpendicularly propagatingprovided thatAk,=0, while the normalized, may be large.
waves, there is coherent changepin During this coherent

evolutionv, has small-amplitude fluctuations around its ini- g Unequal parallel wavenumbers: Ak ,#0

tial value. In the region where the motion jm becomes

stochastic so does the motiondn. The stochastic regionin _ When the parallel wavenumbers of the two waves are

v, agrees with the above-given estimate. Singés a con- dlffer_ent, the coherent motion of the ions changes dras_t|cally.

stant during the coherent motion, the fluctuations)jnare !N this casev, undergoes coherent motion and the tefu]

due to the transformation between andv, . in H (17) is no longer a constant. This limits the rangeias
The main effect of equal parallel wavenumbers is toAK; is increased. Figures 12 and 13 show the time evolution

slightly decrease the range of coherent motion from what ief p andv, for the exact orbits obtained froits) with ky,

is for perpendicularly propagating waves, thus inhibiting=0.001 andk,,=0. These figures illustrate the limits

some ions from reaching the stochastic region. Numerical ~Figure 14 shows the variation ¢f. and 3v; as func-

studies indicate thdSy, /Sy, and|S_,/S_,| are both unity  tions ofp. Forp far frompo=17,H, —H_=2|S_|<3v; so

for £<1 but approach 0 a&—1. This raises the bump id _ thatH ,~H _ . Figure 15 shows the limitation on the range

askj, is increased. Consequently, more ions are reflected bgf coherent motion ir¢ for Ak,# 0.

H_ and the range of coherent motiongis slightly lowered. The coherent motion in, has the effect of detuning the

This is evident from Fig. 10, which shows. /H_ (p=0) waves from exact resonance. The resonance condition for an

for k;,=0.1 and 1. Figure 11 shows the range of motionion withv,#0 is

A. Equal parallel wavenumbers: Ak,=0

R=vp—v,0— (Ak,)v, € Z, (26)
1
Emax 0.1
0.8 2
0.6
w
0.4 . > 0
émin
0.2
1
0 3 ‘2 I1 ‘o 1
10 10° 10 10 10 0.1 . . . f .
k 0 0.5 1 1.5 2 2.5 3
1z t 5
x 10
FIG. 11. Averag€ i, andénax Vs ky, for ky,=k,, fromH.. . v,=40.37 and
the other parameters are as in Fig. 6. FIG. 13. v, vst for the same parameters as in Fig. 12.
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FIG. 14.H. and %vf vs p for the same parameters as in Fig. 12.
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Av forv1=40.37

-4
x 10
1.2 4- 2- 9 2' 4
e v,=10.37
1 — - V1=4O.37 tl- 1
I
0.8} [ J
i
wr 06} b I .
s J. \ .-:
O4F = =imim T et
-~ ~ /-r\
'
0.2} .
0 L L L
0.1 0.05 0 0.05 0.1

Avforv1=10.37

FIG. 16. Averagefni, and &max VS Av from H. for vo,=v;—1—-Av,
v,=10.37 (dotted or 40.37(dashed and the other wave parameters as in

wherev,,and v, are the wave frequencies in the laboratoryFig. 1. Initial conditions and averaging are as in Fig. 6. The abscissa for

frame, andv,= vjo—k;,v,. H describes the ion’s motion as
long asR is close to an integer. Fohk,#0, v, changes
coherently. Conditior(26) is not satisfied for all times, and

v,=40.37 has been rescaled by (10.37/40'3Tthe scaling in(31) were
exact, the dotted and dashed lines would coincide.

the resonant interaction becomes less effective. The coherent

change inv, thus limits itself, which keep® close to an
integer. Since the coherent changep iandv, are linked via
(19), the coherent change mis also small.

Consider a distribution of ions with different initial,o
interacting with two waves of frequencieg, and v,y. For

Ak,=0, all ions will be in resonance with the waves pro-

vided vg—vy0e Z. For Ak,#0, the resonance condition
(26) implies that only ions with certain,q, namely

Vio— Vop— N
v~ ———2 — nez, (27)
Ak,
Ak_forv, =40.37
z 1
] 10° 10" 10° 10°
e v, =10.37
i R R — - v, =40.37
0.8} N ! -
~N-
Y
0.6} By 7
\:
wp \.\
04F ‘_:_:'.';.‘-:_'-
r('(‘/‘
0.2r1 1
0 = " ® 0
10 10 10 10 10

Ak, forv,=10.37

FIG. 15. Averageéy,n and &max VS Ak, from H. for k,,=0.1,k,,=k;,
—Ak,, v;=10.37 (dotted or 40.37 (dasheg, and the other wave param-
eters as in Fig. 1. Initial conditions and averaging are as in Fig. 6. Th
abscissa for;=40.37 has been rescaled by (10.37/40°3W)the scaling in
(30) were exact, the dotted and dashed lines would coincide.
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are initially in resonance. As, changes coherently, they fall
out of resonance.

This situation is analogous to the case of two perpen-
dicularly propagating waves when the wave frequencies do
not differ by an integet? Following Sec. IV C of Ref. 12,
the approximate Hamiltonian, correct to second order in
wave amplitudes, that describes the coherent motion is

~ Av— _
Hor=—1+H. (28)
where (v;—v,) =N+ Av and|Av/<1. In this case the barri-

ersH.. are given by

H.

Av—1_, .
—W|+EUZ+SO_|S,|. (29)
The first term in(28) limits the coherent motion, and plays a
similar role to%v_g. Figure 16 shows the range of motion in
& as a function ofA». The largest range of coherent motion
occurs for Av slightly different from 0, which allows
—(Av/N)I to partly cancelS; in Eq. (29).

As the wave frequencies are increased, the rangekin
and Av for which there is appreciable coherent motion be-
comes much narrower. Let,(Ak,) be either the upper or
lower bound of coherent motion i& for wave frequencies
V14 andv,,=v1,— N. The asymptotic forms in Appendix B
indicate that for two different frequencies, and v,,= vq}

R

Supposeé, is large fork;<Ak,<k,, and thatv,,=4v,,.
eThen &, is large only fork,/64< Ak,<k,/64. Coherent mo-
tion occurs over a smaller range &k, when the wave fre-
quencies are larger. Similarly,

Vib

gb(Akz)"‘vga( ( (30

Via
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gb(Avwga( (@

Via

(31)  work on this problem. We thank R. Spektor for discussing
his work with us and exploring possible experimental real-

Figures 15 and 16 demonstrate the range of coherent motidaations of this process.

versusAk, andAv, respectively, and validate the scalingsin ~ This work was supported by DOE Contract No. DE-
(30) and(31) with wave frequency. As the wave frequencies FG02-91ER-54109, DOE/NSF Contract No. DE-FG02-

are increased\k, and A must be much smaller for ions to 99ER-54555, NSF Contract No. ATM-0114462, and Princ-
be energized to the stochastic region. Hence, just as in tHeton University Subcontract No. 150-6804-1. D.J.S. was
cases of perpendicular propagation®k,=0, for nonzero partly supported by an NDSEG Graduate Fellowship.

but smallAk, energization by waves with low frequencies is
more advantageous than by waves with high frequencies.

4 ) ciate enlightening comments from Dr. D. fisti about his
Av

APPENDIX A: LIE PERTURBATION METHOD
V1. CONCLUSIONS FOR TWO OBLIQUE WAVES
We have shown that two electrostatic waves propagatingi 8 Wz (i(;velc()jpfﬂ:le L|ehperturb§1tlop rréethog foll?vlgnfg ?86 fs.

obliquely to an ambient magnetic field can coherently ener~¢ a1d 17 and follow the notation in Sec. 2.5 of Ref. 18.
gize ions when their Doppler-shifted frequencies differ by a ~ The Lie method provides a Hamiltoni&hthat describes
accurately describes the coherent motion and agrees wePlesx=(q.p) are goverﬂed_by the full Hamiltoniaif (x),
with numerical simulations of the complete dynamical equa-and the new coordinates=(q,p) are governed byH(x).
tions. The energization of ions occurs regardless of the angh depends o and a parameter which orders the perturba-
of wave propagation provided the parallel wavenumbers ofion via
the two waves are approximately equal. If the parallel wave- _
numbers are equal, there is.no coher.ent.acceleration &lpng > XWXt ]y, X(e=0)=x, (A1)
but considerable stochastic energization both along and Jde
acrossB,. Moreover, the perpendicular coherent motion is ;

0 Perp where[ f,g],=3i[(9f/0;) (991 9p;) — (9/3p;) (99l oq)] is

quite similar to the case of perpendicularly propagatingy,» poisson bracket. The old coordinates enter only as a con-

wlavesl.s Thehre Istha smaI:I eTmount of %Oherinf; acgelfrt?]t_'oaition for e=0, which ensures that the transformation for any
along B when the parallel wavenumbers differ, but this om0 oot and near identity.

causes the resonance condition to be violated. A difference The operatorT relates the representation of a physical

between the parallel wavenumbers is similar to the diﬁerencﬁuantityf in the two coordinate systems Byx) = (Tf)(x)
between (o, — w)/w; and the nearest integer. In particular,f(X) =X givesx=Tx. T satisfies

There is no threshold ion energy or wave amplitude re-
quired for the coherent acceleration. The change in the ion dT
gyroradius is linear in the wave frequencies and independent Fe TO0= = TIWX.0),F(X) - (A2)
of wave amplitude. The period of coherent motion is in-—
versely proportional to the square of the wave amplituded! iS given by
and is proportional to the fourth power of the wave fre- _ e IW(X,1)
quency o (w~w;~w,). Furthermore, the deviation from H(X)=T_1H(X)+T_lf de’ T(e') pr
resonanceAl w=w;— w,— Nw; for which appreciable co- 0
herent acceleration occurs scales like*, while the range The second term is not needed for an autonomous system.
in Ak,=kj,—k,, for coherent motion scales like 3. This We expandw, H, T, andH in powers ofe and equate
implies that for lower-frequency waves coherent ion accelterms at each order ia. Collecting terms in(A3) at each
eration is faster and less sensitive to small changes in wavgrder in e gives equations fow;. Upon carrying out the

(A3)

parameters. perturbation expansion to second ordelkjrwe find
Coherent ion energization occurs for two waves with _
appropriately chosen frequencies. An experiment is being Dowi=Hi—Hy, (A4)

constructed that will be able to test the theoretical predictions — —
of this papef! Coherent acceleration also takes place in cer- Dowz=2(Hp=Ha) = [wy,Hy+Hy ). (AS)

tain fields with a continuous frequency spectrum, and is curbyf=4,f+[f,Hy] is the time derivative along the unper-
rently being studied. Such a situation can occur naturally irturbed trajectories. All expressions here are functions of the
the Earth’s ionospher€. Detailed analyses of a broad spec- same set of coordinates. For simplicity we usdor this

trum of waves, and of the effects of weak collisions, remainpurpose, but the final expression tdrgoverns the evolution
to be carried out in future work. of X. Clearly,Ho=H,.

For T to be a near-identity operatowy must remain

small. We choose_ii on the right-hand side ¢A4) and(A5)
The authors thank Professor A. Brizard for helpful dis-to eliminate any terms that would violate this condition.
cussions on the Lie transformation technique. We also appresuch terms are referred to as “resonant” terms.
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For the two-wave problently andH, are given in(7),

while H;=0 for i=2. Using a Bessel-function identigee

p. 361 of Ref. 22 we obtain

o

H1=2 > €iJm,i COS ¢,

i m=-—o

(AB)

where J,, i =Jm(Kixp) and yi=me+Ki,z— vit+ ;. Then
from (A4)

(Oi+ 0y v,0)Wi=H1— >, €Jm; COSPmi-

,m

(A7)

The unperturbed orbits aré=t+ ¢,, z=24, v,=0,

=1, (in a frame where the ion’s initial ,;=0). Along these
orbits there are no resonant terms on the right-hand side of

(A7), so we chooséd;=0. Then

€idm,i

W= — SiN Y - (A8)
i,m m+kiZUZ_Vi
SinceH, andH, are zero(A5) leads to
(&t+z9¢+UZ&Z)W2=2ﬁ2—[W1,H1]. (Ag)
From (A8)
€e 1
[wy,Hil= > (GSPUNSNY
Lamn | 2p M=
EiEJ‘ 1

+kixnJf;Jnj)cosl'  + —
2p M= p
><(—ijme,iJ,Q,j—kanJ,;miJn,j)cosl“_
1 JIm,idnj
+—eie,-kizka—z(—cosF++cosF,) ,
(m

2 = M)

(A10)

where I' . = i+ ;. Along the unperturbed orbitdl .

Strozzi, Ram, and Bers

(Kyx(m— N+)Jr’n,1~]—m+N+,2

S+:_E [&

m { 4p(Mm—pq)
Imd-msn, 2

+k2mem,1‘JL +N 2)+_k12k226162
w4 (Mm—p9)?

+the same with subscripts 1 and 2 switc}wed (A12)

2
€
=2 | (M ez,
> ; l4p(m—p«i)( . o

, 1 212 m,iv—m+2v; i
(M= 20k di i me2y, ) 7 €K — ———— .

(m—pu)?
(A13)
The coherent Hamiltonian is
H(GCH) =Ho(X) +Ha(X1). (A14)

Using /= ¢—t as the coordinate conjugate to the trans-
formed Hamiltonian is

H(¢.2,1,0,)=%02+H,. (A15)

H is a constant of the motion.

When only one resonance condition is satisfied, we find
a second constant of the motion besiffeswhich relates
and v, [when only N is an integer, this constant is,
—(Ak,/N)I]. The dynamical system described B15) is
thus completely integrable. When any two resonance condi-
tions are satisfied it is easy to see thataindv, must both be
half-integers. Then all four resonance conditions are satis-
fied. It does not appear that, in this case, there exists a second
constant of the motion. The dynamics described-bgould
be stochastic.

To find the transformation relating andx, we expand

(A2) and usex=Tx. To first order ine we obtain
X=Tx~X—e[Wi(X,t),X],+O(€?). (A16)

As desired, the coordinate change is near-identity. The rela-

={m—r;=(n—v)}t+const. Some terms are resonanttion between andl is given in(16).
wheni=j regardless of the's. Other terms are resonant AppeNDIX B: ASYMPTOTIC EORMS FOR Sy AND S_

when either 2;, N, =(v,+v,), or N=(v{—w,) is an in-
teger. We construdd, to cancel these terms:

Ho=So(1,0.)+ 8-S _(1,0,)co8 (v3— 1) (p—t)
+(Ki,— Kozt ay—ay)+6,.S,(1,v,)

Xcog (v +vy)(p—t)+ (K +Kop)Z+ g+ )

+2 5S(1,v,)c08 2w (p—1t)+ 2k ,z+2¢;), (All)

whereé_, 6., andé; are unity when, respectivel, N, ,
and 2v; are integers and 0 otherwise. Equati¢h® and(13)
give S; andS_, and

Here we derive the asymptotic forms for the termslin
given in (17), using results in Refs. 5, 22—24. Hor,= ko,
=1, let

2

Sou= 2, €S(p11i.0), (B1)
S_x=€1€2(Sy(p,p1,N) +5,(p, 2, —N)), (B2)
Sofizzl k2 eZs,(p,ui,0), (B3)
S_,= 165Ky Koy (Sy(p. e, N)+S,(p, 2, —N)),  (B4)

where
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w
SX(puM!n):(_)ngcsclu’ﬂ-(‘],u,+l‘]*(,u+l)+n

_‘],ufl‘]f(;l,fl)Jrn)i (BS)

T Jd

4 (B6)

Sy(p,u,n)=(—)""* [ecscumd,d_,nl,
andJ,=J,(p).
Bessel functions of negative order are replaced with

J_,~—sinpmY,, (B7)

whereY , is the Bessel function of the second kind. Using

the asymptotic forms fod,, andY,, ,** we obtain
U(Mapan)EJ,u(P)Yp.fn(P)“’,Beyv (B8)
1 —-1/2
B=- ;(,u(,u—n)tanhao tanha,) ™ 4, (B9)
y=p(tanh ay—ap) —(p—n)(tanha,— ay), (B10)
secha,= P (B11)
ay, a—n

ForN+ 1<y all then/u's are small, and to leading order in
n/u we find

1
~ _ -1/
B MTT(l S (B12)
y~—nNay, (B13)
o~— M—Wﬂo(f,n), (B14)
g n
— g2\ —112
O-O(gyn)_(l g) 1+\/1_—§2) . (815)
Thus,
T d
S~ Z a—o(,u,p,n) ’ (816)
_fem ®17
)7
tem =l oot ago) (B18)
n)=— —
(Em=7| oot
Similarly,
s~ g (o(utLpm)—o(u—Lpn), (B19)
a
~§(01(6)—01(—6)), (B20)

Coherent acceleration of magnetized ions . . . 2731

oo(&l(1+€),n)
m(l+e)

where e=1/u is small for u>1. Expandingo; to leading
order ine,

o1(€)= (B21)

S~ %60’1(0) , (B22)

f(&,n)
= (B23)

)%
Thus,

1
S5~ —- (B24)

M

andS_ both scale like 22 when vy~ v,.
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