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Ray-based calculations of backscatter in laser fusion targets
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A one-dimensional, steady-state model for Brillouin and Raman backscatter from an
inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping
limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump
depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off
density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which
implements this model, is described. The model is compared with traditional linear gain
calculations, as well as “plane-wave” simulations with the paraxial propagation code PF3D.
Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly
et al., Opt. Commun. 133, 495 (1997)] show that laser speckles greatly enhance the reflectivity over
the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase
conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an
ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J.
Hogan, Fusion Technol. 26, 755 (1994)], with a peak radiation temperature of 285 eV, shows
encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this

design. © 2008 American Institute of Physics. [DOI: 10.1063/1.2992522]

I. INTRODUCTION

Laser-plasma interaction (LPD' is an important plasma-
physics problem that poses serious challenges to theoretical
modeling. LPI is the basis of several applications, including
laser-based particle acceleration” and the backward Raman
ampliﬁelr.3 Moreover, for inertial confinement fusion (ICF)4’5
to succeed, LPI must not be so active that it prevents the
desired laser energy from being delivered to the target, with
the desired spatial and temporal behavior. This paper focuses
on modeling the backscatter instabilities, where a laser light
wave (mode 0) decays into a backscattered light wave (mode
1) and a plasma wave (mode 2). In stimulated Raman scat-
tering (SRS) and stimulated Brillouin scattering (SBS), the
plasma wave is, respectively, an electron plasma wave and
an ion acoustic wave. These LPI processes pose a serious
risk to indirect-drive ICE

A wide array of computational tools is used to model
LPI, ranging from rapid (~secs) calculations of linear gains
along 1D profiles to massively parallel kinetic particle-in-cell
simulations. We present here a new tool, called DEPLETE, to
the less computationally expensive end of this spectrum.
DEPLETE solves for the pump intensity and scattered-wave
spectral density for a set of scattered frequencies, in steady-
state, along a one-dimensional (1D) profile of plasma condi-
tions. Pump depletion is included, and the plasma waves are
assumed to be in the strong damping limit (i.e., they do not
advect). Fully kinetic (although linear) formulas are used for
various quantities such as the coupling coefficient. Brems-
strahlung noise and damping, as well as Thomson scattering
(TS), are included. The DEPLETE model, especially the
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noise sources, in some ways resembles that of Ref. 6. Other
similar works that have influenced our thinking, and use 1D
coupled-mode equations, are Refs. 7 and 8.

DEPLETE is a 1D model, but the plasma conditions are
generally found by tracing 3D geometric-optics ray paths
through the output of a radiation-hydrodynamics code. We
therefore call this combined approach to studying LPI a ray-
based one. Details of this methodology, and its limits, are
discussed in Sec. III.

DEPLETE is similar to the code NEWLIP, which calculates
linear gains for SRS and SBS along 1D profiles (NEWLIP is
discussed here in Appendix A). Both codes take seconds to
analyze one profile from the laser entrance to the high-Z wall
in an ICF ignition design. However, DEPLETE includes sub-
stantially more physics than NEWLIP, such as pump deple-
tion, noise sources, and reabsorption of scattered light.
DEPLETE moreover provides pump and scattered intensities,
which, unlike gains, can be directly compared with experi-
ment and more sophisticated LPI codes. Despite its simplic-
ity, DEPLETE agrees well in certain cases with results from
the 3D paraxial laser propagation code PF3D. This is quite
promising given DEPLETE’s much lower computing cost.

There is important physics which DEPLETE does not cap-
ture, with laser speckles or hot spots being among the most
important. Recent SBS experimentsg’10 at the OMEGA Laser
Facility " show good agreement between measured reflec-
tivity and PF3D predictions, while DEPLETE gives a lower
value. This is due to the speckle pattern of the phase plate
smoothed lasers. Section VIII describes one approximate
way to bound the speckle enhancement by doubling the cou-
pling coefficient; the resulting DEPLETE reflectivity always
exceeds the experimental level. A more sophisticated idea for
handling speckles is outlined in the Conclusion. Additional
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beam smoothing, like polarization smoothing (PS) and
smoothing by spectral dispersion (SSD), reduces the effec-
tive speckle intensity and can reduce the reflectivity even
below the speckle-free DEPLETE level.

The paper is organized as follows. Section II derives the
governing equations for the pump intensity and scattered-
wave spectral density. Our ray-based methodology and
model limits are discussed in Sec. III. The numerical method
is given in Sec. IV, including a quasi-analytic solution for the
coupling-Thomson step. Section V compares DEPLETE with
NEWLIP linear gains and PF3D “plane-wave” simulations on
prescribed profiles. The relationship between Thomson scat-
tering and linear gain is discussed in Sec. VI. In Sec. VII, we
compare DEPLETE to the experimental and PF3D SBS reflec-
tivities in recent OMEGA shots. Section VIII presents
DEPLETE analysis of an ignition design with a 285 eV radia-
tion temperature for the National Ignition Facility (NIF).'? In
particular, we show the effect of scattered light reabsorption
and put a bound on speckle enhancement. We conclude and
discuss future prospects in Sec. IX. A review of NEWLIP and
its linear gain is presented in Appendix A. Appendix B de-
tails the numerics of DEPLETE’s coupling-Thomson step.

Il. GOVERNING EQUATIONS

We derive coupled-mode equations, in time and one
space dimension, for the slowly varying wave envelopes, and
find the resulting intensity equations. We do this for the light
waves first, and then the plasma wave in the strong damping
limit. Since our approach is standard, we summarize some
steps. We take these equations in steady state to apply inde-
pendently at each scattered frequency, and transition to a
spectrum of scattered light per angular frequency. This may
be viewed as a “completely incoherent” treatment of the
scattered light at different frequencies. Bremsstrahlung
damping and fluctuations, and TS, are then added phenom-
enologically. Focusing of the whole beam is finally ac-
counted for, giving the system DEPLETE solves. This section
culminates in the DEPLETE system, Egs. (53) and (54), on
which some readers may wish to focus.

A. Light-wave action equations

Let z be the distance along the profile, and assume all
wave vectors and gradients are in z (d,=d,=0). z=0 is
taken as the left edge of the domain (the “laser entrance”),
where we specify the right-moving pump laser; we also
specify boundary values for the left-moving backscattered
wave at the right edge z=L,. The light waves are linearly
polarized in y and represented by their vector potentials
Xi=(1/2)Ai(z,t)§ei¢i+cc, where i=0,1 for the pump and
scattered wave, respectively. A; is the slowly varying com-
plex envelope, and we use the dimensionless a;=eA;/m,c.
Yi(z,1) is the rapidly varying phase with k;=d.¢; and
w;=-d,.. Let o;=k;/|k;| with op=0,=+1 and o;=-1 (ap-
propriate for backscatter). Thermal fluctuations give rise to
both light waves and plasma waves. However, upon appro-
priate averaging the field amplitudes of these fluctuations
vanish (but their mean squares do not). The amplitudes A;
(and nj; below) represent only the coherent, and not the
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noise, components of the fields. We insert a bremsstrahlung
noise source and TS to the intensity equations below.

From the Maxwell equations, and conservation of
canonical transverse momentum m,,,=eA,, we find

A},=(A)0+A—)1)~)3 satisfies
n

[0, —c?d,, + wﬁe]Ay =- w,z,en—ejAy. (1)
il;j=n;+Nj, is the total number density for species j (j=e for
electrons, i for an ion species), N;,=(1/2)n,e'"?+cc, and nj,
is the slowly varying plasma-wave envelope. We define
ijE[anjz-ez/eomj]”z, vy =[T;/m;]"?, and \p,=vr;/ w,,
with Z; the charge state. As usual, the massive ions are
treated as fixed in the transverse current. (We look forward to
a circumstance in which a positively charged species must be
considered mobile, such as an electron-positron plasma!)

Following, e.g., Ref. 13, we introduce the small param-
eter o~ wi"'&, In X~ki_1<9x In X for X=A,;,k;, etc. We order
d,,0,~ 6, ;~ &', and the right-hand side of Eq. (1) ~&. To
order 6°, we obtain the free-wave dispersion relation

W=’ + %k i=0,1. )

For the steady-state conditions considered below, we take w;
to be constant and find the eikonal ck;(x)=0;7,0; with
7 =[1-n,/n,]"? and n,= w’eym,/ > the critical density of
mode i. Also, the group velocity is v, = o;7,c.

Assuming  perfect phase matching (ky=k;+k,,
wy=w;+®,), the resonant order & terms in Eq. (1) yield the
envelope equations,

.2

Loag=- aip,
4 Wy n,

.2 n*

1w

P (4)
(O] n,

Loa;=-

The operator L; = d,+v ;0. +(1/2w;)(d,0;+c*d.k;). Our quasi-
monochromatic light waves (i=0,1) have action density14
N;=(m,/87r,) wiaiai*, where r,=e?/4meym,c*~2.82 fm.
We also define the (positive) action flux Z;=N,fv,,| and in-
tensity /;= w;Z;. In practical units,

IN
jaif?=5=—. (5)
Pem77i
where \,=2wc/w; and P,,=(w/2)m,>/r,~1.37

X 10" W.cm™. um?. We form Eq. (3) Xa:+cc and Eq. (4)
><aT+cc to find

- Ny—09.Zy= N, — 32, =J, (6)

J=—im,c? Im[a:alngz]. (7)

B. Plasma-wave action equations

We describe the plasma waves following the dielectric
operator approach of Cohen and Kaufman,"

€(wy +id,ky = id)ny = Ny, (8)
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2 2

Xe(wZ’kZ) 2 n aoal )

2a)pe
The charge-density fluctuation n,= —n62+2 Zi iy experi-
ences a ponderomotive drive np,g. W)= w,— k2 u is the
Doppler-shifted plasma-wave frequency in the frame of the
plasma flow # (w, is in the lab frame). e=1+y is an opera-
tor, where the time and space derivatives reflect envelope
evolution and y=2Xy; is the total susceptibility. x, in ny,q is
simply a function, not an operator. x; is the (linear) kinetic,
collisionless susceptibility of Maxwellian species j,

1 w)
Xi=- Z(); §= =. (10)
! 2k2>\Dj T ko2
2(0)=im'"2e¢ erfe(=ig) is the plasma dispersion function'®
and erfc is the complimentary error function.'” Gauss’s law
relates n, and nj,
ne == (1+ xny, (11)
< 1 me 6) Xi (12)
Nin = — A—+——nz_—n’
i2 Xi Z" mx. 2 Z 2

with x;=2,x;. For SRS, where the ion motion is negligible,
we usually take 1+ x;— 1 to save computing time.

Expanding € for slow envelope variation, and retaining
only €,=Re € in the derivatives, gives

n
[(9[+Ug2(91+ V2+l.5(1)2]nz=—l._?j (13)

€= e,/ dw), € =0d€,/dky, vy =—€"/€ is the plasma-wave
group velocity, v,=Im[e€]|/€ is the damping rate, and
0w, =—¢€,/ € is the phase detuning.

We now assume the plasma wave is in the strong damp-
ing limit, where its advection is neglected,
+idw,|ln,|. This implies the instability is below its absolute
threshold so that steady-state solutions are accessible. Also
going to steady state, we find

6((02,](2)1’12 = npnd' (14)

Replacing n,, via Egs. (11) and (14) yields

J= wOfIZ()Zl. (15)
The coupling coefficient fl is
~ r
I Erslm{&(l*‘)ﬁ)]: ngr’ (16)
€ G

2ar, 1 k3

Mg=""e——2_ (17)
m,c™ wy k0|k1

gr =1+ x> Im x, + [x.[> Im x;. (18)

The second form of fl exhibits the resonance for |e] < 1. The
over-tilde on fl indicates it will be modified below to ac-

count for beam focusing. T, and thus J, are usually positive.
We now have a closed system for modes 0 and 1, with no
independent equation for mode 2,
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Ny + 0,2y = — wol 122, (19)

ON, - 3.Z, = wl1ZyZ, . (20)

C. Steady-state equations for a spectrum
of scattered waves

We transition to steady state (J,=0) and work with in-
tensities. Since we have assumed J,w;=0, we multiply Eq.
(19) by w, and Eq. (20) by w; to obtain

W ~
dz10=—_0F1]0[1, (21)
W

_dzll = 1:11011. (22)

Here and elsewhere, d,f(x) denotes the ordinary derivative of
a function of one variable, while d,f denotes the partial de-
rivative of a function of several variables.

The bremsstrahlung source and TS are expressed in
terms of spectral density i;(z,w,) (intensity per angular fre-
quency). The scattered intensity is then I,=fdw,i;. We take
Eq. (22) to apply independently at each w,, and integrate the
coupling term in Eq. (21), to find

dzl():—fd(x)l F 1011, (23)

—o"zil :]':IIOil' (24)

This is a totally incoherent treatment of the scattered light at
different frequencies, and is unrealistic to the extent there is
spectral “leakage” between nearby w; intervals due to, e.g.,
envelope evolution.

D. Bremsstrahlung source and damping

We incorporate electron-ion inverse-bremsstrahlung
light-wave damping (x, and ;) phenomenologically for

modes O and 1, as well as bremsstrahlung noise (il) for
mode 1, to find

dZI():_ Kolo—fdwlﬂflloil, (25)
W)

—(?Zl.1=—Kll.1+§1+f1]()l.1. (26)

As for fl, the over-tilde on 51 denotes it will be modified
due to focusing.

I, and i, represent integrals over solid angles in k space,
which we now specify. Absolute solid angles are needed in
the noise sources, and cannot be simply scaled away, because
scattered intensities determine pump depletion. We follow
closely Bekefi’s book'® in this section. We take I,=Q1;  for
i=0,1 (see Secs. 1.6 and 1.7 of Ref. 18). I; ¢ is the intensity
per solid angle interval d{) in k space, which we assume is
constant over the solid angle (), that participates in the scat-
tering. ), is the local (in z) solid angle in the plasma, which
we express in terms of a cone half-angle 6, ; as
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Q;=2m(1-cos 6,,). (27)
From Snell’s law, 6, ; varies with z according to
cos 6. = {O if n, = n,; cos® 6,
PU 1 = % sin? 6,]'% otherwise ’
(28)

n.; cos> 6, is the “critical density” above which we cut off
backscatter (I';=3,=k,=0). 6, is a “vacuum” cone angle,
which we find from the solid angle in the beam’s F-cone (for
simplicity we use the same solid angle for pump and scat-
tered light). This is reasonable if the scattering mostly occurs
in laser speckles that are near diffraction-limited. In terms of
laser optics F-number F,

-12 1

=] -—

1+ — s
8F?

cos 6, =
v 4F?

(29)

9”2277(1—0056)~—

4F? (30)

The approximate forms apply for F>1.
The upshot of the solid angle discussion [see especially
Eq. (1.133) of Ref. 18] is

S =0Qyj(w),

where j(w) is the emission coefficient per d{) and in one
polarization (see p. 134 of Ref. 18),

31)

4

N W, M, n;

I G 5 Migay g
127\N27 v, € jeions e ‘

J(w) = (32)
A, is sometimes called the Gaunt factor and resembles the
Coulomb logarithm, although it arises in calculations without
ad hoc cutoffs on impact parameter integrals (see Chap. 3
of Ref. 18). For the case ;>w,, Bekefi finds
A =7,/ (b)), Where

y_h . >
I if T,>77Z; eV,
4Nm,T, !
bin= 52 > (33)
Y m,c .
(—) Zir, otherwise
2 T,

e

The first, high-7, case typically applies for hohlraum condi-
tions. The numerical prefactors come from a detailed binary-
collision calculation, and y:ecz 1.781, where C~=0.577 is
the Euler—Mascheroni constant. Our expression for j does
not include the enhanced emission for w;~ w,, due to col-
lective effects.””

We find the absorption coefficient «; via Kirchoff’s law
(see Ref. 18, Sec. I1 C),

Q; jlw)

K= Q"B (@) (34)

Our «; equals Bekefi’s «,,. B, is the vacuum blackbody spec-
trum for one polarization, with units dI/(dwd(}),

f o’

By(w)= gmceTe 1’

(35)
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T,

z8773c2’

J given above was found for collision durations short com-
pared to the light-wave period, which entails the Jeans limit
ho<T, We therefore use the approximate form of B, to
obtain

ho<T,. (36)

\,2 Q r,C
— Z]’—p— > JZzlnA
Q wi ng]elonsn

(37

Ki_

For an optically thick plasma (d.i;=0) with no pump
(IO 0), we obtain for i; from Eq. (26) the fluctuation level
T,

2 O

i1 == =—IB,(w).
ki f
fand 3, are defined in Sec. II F. We thus recover the black-
body spectrum, required by Kirchoff’s law. The factor 77%
that usually appears in the blackbody spectrum in a plasma is
absent due to our treatment of solid angles.

(38)

E. Thomson scattering

Thomson scattering (TS) refers to scattering off plasma-
wave fluctuations resulting from particle discreteness (Ref.
20, p. 308). Had we retained a separate plasma wave equa-
tion, the fluctuations would appear in it as Cerenkov
emission.® It is an important noise source for backscatter,
especially for SBS. We express Ap, the TS scattered power
increment per dw, per d€); (k; solid angle), within a thin slab
of width Az, as

do
Ap,=——I,, 39
P1 dw,dQ, 0 (39)
do S
= Azt — 40
dod®, nA(z) Zlﬂrez (40)
A(z) is the beam area, defined in Sec. IIF. y=1

—sin®0, sm 20, is a geometric factor. 6 is the angle between
ko and R the vector from source to “observation point.” For
a beam with large F, 6,~ 6,<<1. 0, is the angle between R
and the pump polarization. We usually take =1.

The form factor S (units of time) is from Eq. (138) of
Ref. 20, valid for arbitrary (non-Maxwellian) distributions,
generalized to multiple ion species,

2
uS(k o) =1+ x|’ F, + |x.)? > —J-Z F,,

jeions fe

(41)

F;= f duf(0)w+k-v). (42)
f; is the distribution function of species j (fdPv f;=1). For a
Maxwellian,
1 kN
Fi=——F—¢ g% ( —Di" I
kl}Tj\r'27T Qo

(43)

and
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2
wle] ) < T
T S =g = [P Iy [P 2 my;
( De) jeions ‘e

(44)

This form agrees with the multiple-ion result in Eq. (3) of
Ref. 21. Henceforth we assume Maxwellian distributions.

From Eq. (39), we form a differential equation for i, that
describes TS,

9, 4p,

= . 45
Aly Az (45)

= dlrs=1ly, T

Since TS transfers energy from the pump to the scattered
waves, we include it in both equations,

dZIO= - Kolo - j da)lﬂlo(Tl + flil)’ (46)
)
—azi1=—K1i1+Sl+Io(T1+1:1i1). (47)

For convenience, we write 7, as

S(kZ’ wé) _ 758+

n=0n =77 (48)

2 le]>°
Q kolp,)?
Tg= —lwnerﬁ—( 2 1,36) . (49)
T w)

7, is always positive, while 7g and g, have the same sign as
w; (which can be negative for IAW’s when the plasma flow
is supersonic along EO).

It is useful to note that i,=7,/T"; sometimes plays the
role of an effective seed level for iy,

;o T Ts8s

- = . (50)
'y Tggr

For the special case 7;,=T,, we have g =g and i_ is inde-
pendent of X

(51)

This fact is used in Sec. VI to discuss the relation of TS to
linear gain.

F. Whole-beam focusing

We wish to incorporate the effects of whole-beam focus-
ing in a simple way. The equations as written hold locally in
z, but do not model focusing. To do this, we treat the trans-
verse intensity patterns of I, and /; to be uniform flattops of
varying area A(z). The beam focuses at the focal spot z,
where A attains its minimum A(zz). Let ,=1,(z)/f(z) be the
total power at z divided by the focal spot area, with focusing
factor f=A(zp)/A(z)<1. We typically employ for f the re-
sult for the on-axis intensity of a Gaussian beam,22

f=l1+(z-zp%z5]", (52)

where 7, is an effective Rayleigh range. For a Gaussian beam
with optics F-number F, zy=(4/m)\F2. This form approxi-
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mately fits the random phase plate (RPP) smoothed beams
designed for NIF (for an appropriate z).

Substituting (1,,i;)=f" (70,'17,) into Egs. (46) and (47),
and freely commuting f with J,, yields the principal equa-
tions solved by DEPLETE,

W,
dzlo(z)=—K0[0—Iofda)lw_o(71+rlil), (53)
1

iy (z, @) = Kyl = 2y = Ip(my + Tyiy). (54)

I'=/T, and 3,=7"'3,. In Egs. (53) and (54) and hence-
forth, all /; and i; are understood to have suppressed over-
tildes, that is, to refer to total transverse powers over focal-
spot area. Similarly, the plasma-wave amplitude from Eq.
(14) can be written

2
X—[C—kz} fa; (55)

®e

with E?EZ-)\?/(PE,,, 7;); see Eq. (5).

All symbols in Egs. (53) and (54) are positive, except I
may be negative for SBS in case w,<<0. This corresponds to
the scattered wave having a higher frequency than the pump,
in the plasma frame. The scattered wave then gives energy to
the pump, and DEPLETE handles this situation correctly.

lll. RAY METHODOLOGY AND MODEL LIMITS

DEPLETE calculates LPI along given plasma conditions
for a 1D profile. A typical application is to study a laser beam
propagating through conditions given by a rad-hydro simu-
lation. We use many independent rays to model the whole
beam, which introduces some statistical inaccuracy. The rays
are generally found by tracing 3D refracted paths through the
rad-hydro output. Although strictly not a part of DEPLETE,
this is the major way we utilize geometric-optics rays. Wave-
optics effects, such as laser speckles and diffraction (of both
the pump and scattered light), are also not included in
DEPLETE. We present one way to approximate gain enhance-
ment due to speckles in Sec. VIIL.

However, laser intensity is not found from a rad-hydro
simulation. Such codes generally treat a laser beam as a set
of rays, which are absorbed as they trace out refracted paths.
The laser intensity in a zone is found by dividing the total
power of all rays crossing that zone by its transverse area.
This approach suffers from several problems for our pur-
poses, including the fact that intensities remain finite at caus-
tics only due to the finite number of rays and zone size.
Instead, we run DEPLETE separately for each ray, and use a
model for the laser beam to give an initial intensity (at a
sufficiently low density that little absorption has occurred)
and z-dependent focusing factor (generally based on vacuum
propagation). The intensity along a DEPLETE 1D profile is
thus independent of refraction that occurs due to the plasma.
Refractive changes in beam intensity occur, for instance,
when a beam propagates between two high-density regions.
However, our independent-ray treatment has the benefit that
caustics pose no problem.
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DEPLETE assumes that the laser and scattered light follow
the same path, and thus see the same plasma conditions. The
two light waves refract differently if their wavelengths differ,
as in SRS, or in SBS for certain transverse plasma flows.>
The departure of ray paths becomes significant when the two
rays see sufficiently different plasma conditions in the gain
region for a given wavelength that the coupling or other
coefficients differ significantly. This requires sufficiently
strong transverse plasma gradients.

IV. NUMERICAL METHOD

We solve the DEPLETE system Egs. (53) and (54) from
the laser entrance z=0 to the right edge z=L,. For backscat-
ter (considered in this paper), we give Iy, and ijz(w;) as
boundary conditions, where f;=f(z=0) and fr=f(z=L,).
We solve this two-point boundary value problem via a shoot-
ing method, marching from right to left. We guess Iz and
solve the initial value problem from z=L, down to z=0, and
iterate until the resulting /y; is sufficiently close to the de-
sired value. Because Iy is just one scalar, it is more feasible
to shoot on it than on the set of values i;;(w;). Generalizing
our approach to 3D, where one would have to shoot on
Iog(x,y) over a transverse plane, is much more difficult; a
different technique for 3D pump depletion is used in the code
sLIP.** For the right-boundary seed value i, we either use 0
or the optically thick i¥" from Eq. (38). The choice seems to
have little effect, since volume sources (either TS or brems-
strahlung) typically produce a comparable or larger noise
level after a short distance.

We solve Egs. (53) and (54) by operator splitting.
Let the operator B solve the “bremsstrahlung” system

25,26

dZIO =- Kolo, (56)
azl.1=K1i1—21, (57)
and the operator C solve the “coupling-Thomson™ system
Wo .
dzl():_l() dwl_(T1+F111), (58)
o
0y ==Io(m +T'yiy). (59)

To advance the solution from the discrete grid point z” down
to z"~! (the decreasing index matches DEPLETE’s right-to-left
marching), we first apply B for a half-step, then C for a full
step, then B for a half-step again. The splitting theorem guar-
antees that if B and C are second-order accurate operators,
then the overall step is second-order accurate. Schematically,
a complete step is

{Io,i}}""" = B ,C1Bo{lo.i1}". (60)

In usual applications we are given plasma conditions,
and thus the coefficients in the DEPLETE equations, only at a
discrete set of points {z""}. We use linear interpolation to find
the coefficients at the needed intermediate points, as shown
below. We stress that the numerical accuracy of
DEPLETE is strongly influenced by the quality of the given
plasma conditions.

Phys. Plasmas 15, 102703 (2008)

A. The bremsstrahlung step B

B must solve Egs. (56) and (57) with k; and 2 constant,
to at least second-order accuracy. This linear system is
readily solved analytically. Since there are two “half-steps”
of B in Eq. (60), we consider a generic step of size Az with
initial conditions {I,,i,}!, yielding new values {I,,i,}°.
X"2=(X+X")/2 denotes the zone-centered value of some
quantity X. If K}/Z?&O, we find

Io=1Iy expl kg *Az], (61)

0= (i} = i9T"exp[- k}*Az] + 9T, (62)

Equation (62) applies separately at each w,. For the special
case K}/ 2=0, Eq. (62) is replaced with

il=ij+3|?Az (x'"?=0). (63)

The rightmost B in Eq. (60) advances the system from
7" to z"V2. Accordingly, for this step, the needed coefficients
in Egs. (61) and (63) are interpolated at 1/4 the way
from 7" to %', X'2=[(1/4)X""'+(3/4)X"]. Similarly, the
leftmost B in Eq. (60) advances the system from
772 t0 277! and uses X'?=[(3/4)X"'+(1/4)X"]. In both
cases, Az=(z"=7""")/2.

B. The coupling-Thomson step C

We now turn to the C operator. /; is evolved via a con-
servation law of the C system, Egs. (58) and (59),

dz|:IO_del%i1:| =0. (64)
)

On the discrete z grid, this gives
13-‘:13+de,@(i7-'-i7). (65)
)

Before doing this, we must advance i; using Eq. (59) with
constant [y=1If (that is, we neglect pump depletion within a
zone). This gives rise to a numerical challenge. Namely, the
coefficients 7, and I, are both proportional to |2, and con-
tain a narrow resonance where Re e=0 if Im € is small (that
is, where the beating of the light waves drives a natural
plasma wave). Integrating through these sharp peaks with a
standard ODE method like Runge-Kutta performs very
poorly unless the resonance is well-resolved by the z grid
(which it usually is not). To alleviate this problem, the key
observation is that € itself varies slowly in space, even
though |€[~2 varies rapidly near resonance. We can therefore
represent € as linearly varying with z across a cell, and ana-
Iytically solve the resulting system. We merely quote the
result here, and refer the reader to Appendix B for the deri-
vation and definition of the relevant quantities,

BrAw, _ iT' (66)

i =3 +ie

V. BENCHMARK ON LINEAR PROFILES

This section compares the results of DEPLETE with those
of NEWLIP and PF3D on two contrived profiles with weak
linear gradients, one for SRS and another for SBS. DEPLETE
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FIG. 1. Plasma conditions for SRS benchmark.

and PF3D embody quite different physical models, each with
their own approximations and limitations. One can view their
favorable comparison here as a ‘“cross-validation” of these
models in a regime where they should agree.

To compare with the NEWLIP linear gain G, (see Appen-
dix A), we need a noise level against which to compare the
DEPLETE scattered spectrum at the laser entrance, i;;. For this
noise level, we choose i at z=0, given by solving Eq. (54)
with just the bremsstrahlung terms (Z,—0),

0 = 1 i = 3. (67)
This is exactly Eq. (57). We then introduce the DEPLETE gain
Gy,

iy, _ “scattering”

Gy=ln- =
L

PP (68)
noise

where i;; is the solution to the full DEPLETE equations. G;
and G, are exactly equal under the following conditions:
there is no pump depletion, no TS (7,=0), no absorption of
scattered light (k;=0), and no volume bremsstrahlung noise
(3,=0); the only seeding in DEPLETE is then via the bound-
ary values i;g(w).

A. SRS benchmark

The spatial profiles of our SRS benchmark plasma con-
ditions are shown in Fig. 1. We use a profile length
L.=510\,, pump vacuum wavelength X\o=(1054/3) nm,
fully ionized H ions with T;=1 keV, and no plasma flow
(#=0). In both the DEPLETE and PF3D runs of this section,
SBS was not included. Figure 2 plots the resulting reflectivi-
ties for several pump strengths. Although these are all
above the homogeneous absolute instability threshold of
15~0.21 PW/cm?, the time-dependent PF3D runs rapidly
approach a steady state and show no signs of a temporally
growing mode.”” The weak gradients, or incoherent noise
source, may lead to stabilization. After increasing exponen-
tially with Iy, for weak pumps, the reflectivity rolls over.
This saturation due to pump depletion is generic for three-
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FIG. 2. (Color online) SRS reflectivity vs pump intensity for the SRS
benchmark profile of Fig. 1. The black circles and red squares are for PF3D
and DEPLETE, respectively.

wave interactions in the strong damping limit, as demon-
strated analytically by Tang.28

We compare the gains G; and G, from NEWLIP and
DEPLETE, for several pump strengths, in Fig. 3. The general
shapes of the gains are quite close, although their absolute
levels differ. For the weakest pump strength, where pump
depletion plays little role (as can be inferred from the reflec-
tivity plot in Fig. 2), the peak G, is slightly higher than G,.
This is due to the volume sources in DEPLETE, namely TS
and bremsstrahlung noise. To illustrate this, we plot G, found
with no Thomson scattering (7;=0) as the black dotted
curve. It lies between the two other curves near the peak,
and overlaps G; away from the peak. The curves for the
two larger values of /y; in Fig. 3 show G, to be progres-
sively farther below G; at peak. This results from pump
depletion, which the reflectivity plot clearly shows is signifi-
cant for I; =0.8 PW/cm?. The bremsstrahlung noise level
i varies between (2.4-4.1)X 107 W/cm?/(rad/s) over
A1=650-550 nm.

voalondontunlonhin vl L

30 Juntunluntunluniin
=1

IOL_1 | \

|

lo.=0.8

I OL=O.4 PW/cm

SRS gain (G or Gqg)

0 ____J. \. —_ \\
—IlTI'|||||||||||||||||TI| —f|'||||||||||||||||||||||
580 590 600 610 580 590 600 610 580 590 600 610
A (nm)

||||T|||||||||||||||ﬁ|r|'l|

FIG. 3. (Color online) DEPLETE gain G, (black solid), NEWLIP gain G; (red
dashed), and G, with no TS for I,;=0.4 PW/cm? (7,=0, black dots), for
SRS benchmark. TS and volume bremsstrahlung noise enhance G, over G;
for the smallest /,;, while pump depletion suppresses G, for the larger two.
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FIG. 4. SBS benchmark profile.

We also compared DEPLETE to the massively parallel,
paraxial laser propagation code PF3D.% This code solves for
the slowly varying envelopes of the pump laser, nearly back-
scattered SRS and SBS light waves, and the daughter plasma
waves, in space and time. A carrier »*" is chosen for each
mode (except for the ion acoustic wave), and the correspond-
ing rapid time variations are averaged over. A local eikonal
k", given by the appropriate w*" and dispersion relation with
local plasma conditions, contains the rapid space variation.
Kinetic quantities, such as Landau damping rates and Thom-
son cross sections, are variously found from (linear) kinetic
formulas or fluid approximations. There is no bremsstrahlung
source, but the pump and scattered light waves all experience
inverse-bremsstrahlung damping. The plasma waves undergo
Landau damping, and the advection term v ,,d,n, is retained
(i.e., they are not treated in the strong damping limit). The
noise source in PF3D is plasma-wave fluctuations chosen to
produce the correct TS level, and uniformly distributed over
a square in k, space (corresponding to the transverse x and y
directions) extending to half the Nyquist & in both k, and k,.

To replicate the 1D model of DEPLETE, we performed
“plane-wave” simulations in PF3D. The incident laser at the
z=0 entrance plane is uniform in the x and y directions
(i.e., there is no structure like speckles), both of which
are periodic with size L,=L,=128\, and grid spacing
dx=dy=1.33\,. The z spacing is dz=2\,. As described
above, the TS noise fills a square in k, space extending to
ke k,=*ky,, with k;,=(3/16)k, and ko, = wy/c. We envel-
oped the SRS backscattered light around "=0.592w,
(A1=593.3 nm), which has the highest linear gain. Over the
slight variation of our profile, the average k{"=0.461k,.

DEPLETE requires a solid angle ()., which we express in
terms of an F-number F, for TS and bremsstrahlung emission
(we excluded the latter for PF3D comparisons). Taking &{"
and k;, to determine the focal length and spot radius, one
finds F=k{"/2k;,=1.23. The scattered light does not uni-
formly fill the noise square in k, space, but rather develops
into a somewhat hollow “ring” with a radius =0.12k,,
(departing more from a square for stronger pumps); there is
some ambiguity in the appropriate F to use. We choose
F=1, which leads to very close reflectivities for the weakest-
pump case shown in Fig. 2, and is near the noise-square
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FIG. 5. SBS reflectivity for SBS benchmark profile. The squares are
DEPLETE results, and the dashed line is an extension of the low-/j; results.

estimate F'=1.23. Sidescatter at these angles may stress the
accuracy of PF3D’s paraxial approximation.

Figure 2 shows the DEPLETE and PF3D SRS reflectivities
for the benchmark profile. The PF3D values are taken at ¢
=39.4 ps, after which time all reflectivities remain roughly
constant (the laser ramped from zero to full strength over
10 ps). The agreement is quite good, especially in the linear
(weak pump) and the strongly depleted (strong pump) re-
gimes. This increases confidence in the validity of the differ-
ent approximations made in both codes. It took about 2 s of
wall time for DEPLETE to run on one Itanium CPU, as op-
posed to 5300 s on 16 of these CPUs for PF3D to advance
10 ps.

B. SBS benchmark

We performed an SBS benchmark (with SRS neglected)
using the profiles in Fig. 4. The ions were fully ionized
He (Z=2, A=4) with T;=T,/5. The parallel flow velocity
u is shown normalized to the local acoustic speed
cZE (ZT,+3T;)/Am,. The pump wavelength and profile
length match the SRS benchmark. The SBS reflectivity ver-
sus pump strength is plotted in Fig. 5, which shows pump
depletion for I, =1.25 PW/cm?. We estimate the absolute
threshold 75°=2.6 PW/cm? and stay below this. We used
F=1.7 since this gives good agreement with PF3D ‘“‘plane-
wave” simulations for low /). However, for larger values of
Iy a ring in k| space develops, similar to the SRS runs, and
is accompanied by a large increase in reflectivity.

Figure 6 compares the DEPLETE and NEWLIP gains, G,
and G;. For the smaller two pumps, we see the enhancement
of G, over G, due to TS (even though pump depletion has set
in for the second case I, =1.4 PW/cm?), as discussed in
Sec. VI. The dotted black curve for I,;=0.6 PW/cm? is G,
computed with no TS, and shows the modest increase in G,
stemming from bremsstrahlung volume (as opposed to
boundary) noise. The elevated plateau of G to the left of the
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FIG. 6. (Color online) SBS DEPLETE gain G, (black solid), NEWLIP gain G,
(blue dashed), and G, without TS for I,; =0.6 PW/cm? (7,=0, black dotted),
for SBS benchmark profile.

peak is also due to TS. I,;=2.5 PW/cm? gives G,< G, due
to strong pump depletion. In all cases, the wavelength and
width of the main peak of the two spectra are similar. il,’r, the
bremsstrahlung solution, varies slightly from (4.17-4.25)
X 107 W/cm?/(rad/s) over A;—\y=20 to —3 A.

VI. THE RELATION OF THOMSON SCATTERING
TO LINEAR GAIN

As seen in our benchmark runs, TS leads to an enhance-
ment of the DEPLETE gain compared to the NEWLIP gain (for
negligible pump depletion). This is readily seen via the
scattered-wave equation with just coupling and TS, Eq. (59),

9y == Io(m +T'yiy). (69)
We use Eq. (50) to obtain
Wi +1iy). (70)

y=[yI"| is the spatial gain rate. Typically, v has a narrow
peak in z at the resonance point, while i varies slowly. For
simplicity, we hold i, constant at the resonance point, and
solve for iy across the region z=0 to L,, which includes the
resonance. In our usual notation,

diy=—

ip=(ijg+i)e% —i,. (71)

G,=[tdzy is the NEWLIP linear gain. For G,<lI,
i11=0g(1+G))+i,G;, and emission due to the boundary
source dominates over TS. In the opposite limit,

iy =(ig+i,)e’, ef>1. (72)

TS therefore gives rise to an effective boundary source i,
(for a narrow resonance). In this sense, it does not signifi-
cantly alter the shape of the gain spectrum (i varies slowly
with w,). However, it does lead to a difference in the abso-
lute magnitude of the scattered spectrum, as embodied in an
“absolutely calibrated” gain like G,;. As an illustration, let us
take 7; R=i?T, the optically thick bremsstrahlung result of Eq.
(38), for simplicity evaluated at the resonance point in the
Jeans limit Aw; <T,. Moreover, we set T;=T, so that i_ as-
sumes the simple form of Eq. (51). The effective seed is then
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ilR+iT*>ilOT<1+&l¢f7]0771__/>' (73)
0 W) Wy

The second term on the right (=i,/ i(l)T) is typically =10 for
SRS: for our SRS benchmark, i/ i?Tz 3. But it can be quite
large for SBS since wy>w; (for our SBS benchmark,
i./iT~400). A similar result is found in Ref. 6. The authors
explain this on the thermodynamic grounds that bremsstrah-
lung and Cerenkov emission (which produces TS) generate
equal light- and plasma-wave action, so the light-wave en-
ergy dominates by the frequency ratio. This manifests itself
in the wy/w; factor in Eq. (73), which is much larger for
SBS.

VIl. SIMULATION OF SBS EXPERIMENTS

Experiments have been conducted recently at the
OMEGA laser to study LPI in conditions similar to those
anticipated at NIE* These shots use a gas-filled hohlraum,
and a set of “heater” beams to preform the plasma environ-
ment. An “interaction” beam is propagated down the hohl-
raum axis after being focused through a continuous phase
plate (CPP)*! with an {/6.7 lens to a vacuum best focus of
150 um. The plasma conditions along the interaction beam
path have been measured using TS, validating two-
dimensional HYDRA™ hydrodynamic simulations that show
700 ps after the rise of the heater beams, a uniform 1.5-mm
plasma with an electron temperature of =~2.7 kev.*

Figure 7(a) displays the instantaneous SBS reflectivity
increasing exponentially with the interaction beam intensity
700 ps after the rise of the heater beams. These experiments
employed a 1 atmosphere gas-fill with 30% CH, and 70%
C;3Hg to produce an electron density along the interaction
beam path of 0.06n.,. Three-dimensional PF3D simulations
agree well with the experiments.35 Unlike the plane-wave
simulations discussed in Sec. V A, these simulations include
the full speckle physics. The DEPLETE results (blue solid
curve) fall well below the experimental data in the regime
where pump depletion does not play a significant role
(I,=2 PW/cm?). This indicates that speckles are enhancing
the SBS.

One way to approximate the speckle enhancement is to
consider how much the coupling increases for the completely
phase-conjugated mode.*® This mode has a transverse inten-
sity pattern perfectly correlated with that of the pump, over
several axial ranks of speckles, and therefore enhances the
coupling coefficient F,.37 For an RPP-smoothed beam with
intensity distribution ~e~/c, this effectively doubles I';. This
should provide an upper bound on the reflectivity so long as
the gain per speckle is =1. If this is not the case, the gain in
a speckled pump suffers a mathematical divergence (miti-
gated by pump depletion) as described in Ref. 38. Our phase-
conjugate considerations would then not apply.

The blue dashed curve in Fig. 7 shows the DEPLETE re-
sults with twice the nominal coupling. The 2 XT'; curve is
always above the experimental reflectivities. The threshold
intensity for which SBS equals 5% is 1.8 and 0.9 PW/cm?
for DEPLETE with the nominal and twice-nominal coupling,
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FIG. 7. (Color online) (a) SBS reflectivity for OMEGA experiments with
CH gas fill and T,~2.7 keV (described in text). Black circles are measured
values, the blue solid curve is DEPLETE calculations with the nominal cou-
pling I';, and the blue dashed curve is DEPLETE calculations with
2XT',. (b) DEPLETE and PF3D SBS reflectivities for a similar configuration
but 7,~3.3 keV. Black crosses are PF3D simulations, and the blue curves are
the DEPLETE results as in (a).

respectively, while the threshold  is
~1.5 PW/cm?.

Comparison of DEPLETE and PF3D is displayed in Fig.
7(b). These calculations were performed using plasma con-
ditions from a HYDRA simulation, for a configuration similar
to that of Fig. 7(a), but with a higher heater-beam energy.
The resulting conditions are similar, except the electron tem-
perature is higher (about 3.3 keV). The DEPLETE reflectivity
with the nominal coupling (solid blue curve) lies below the

PF3D results for the two intermediate values of /. This dem-

experimental
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FIG. 8. (Color online) Materials and laser beam cones for the NIF example.

onstrates that speckle effects enhance the PF3D reflectivity for
moderate /,. The DEPLETE results for 2 XI'; (dashed blue
curve) are always above the PF3D results. Preliminary analy-
ses with DEPLETE and PF3D of OMEGA experiments de-
signed to study ion Landau damping in SBS' also show a
significant enhancement due to speckles.

VIil. ANALYSIS OF NIF IGNITION DESIGN

In this section, we exercise DEPLETE on an actual NIF
indirect-drive ignition target design (see Fig. 8). The target
was designed using the hydrodynamic code LASNEX.”® For
more details about the design, see Ref. 40; LPI analysis for
this and similar ignition targets, including massively parallel,
3D PF3D simulations, can be found in Ref. 41. The design
utilizes all 192 NIF beams (at 351 nm “blue” light), which
deliver 1.3 MJ of laser energy. We analyze LPI along the 30°
cone of beams (one of the two “inner” cones). The pulse
shape for one quad (a bundle of four beams), expressed as
nominal intensity at best focus, is shown in Fig. 9, and
reaches a maximum of 0.33 PW/cm?. The speckle pattern
for a quad approximately corresponds to an F-number of F
=8, which we use for DEPLETE’s noise sources (but each
beam individually has F=20 optics). The focal spot is ellip-
tical with semi-axis lengths of 693 and 968 um. The peak
temperature of the radiation drive is 285 eV. The materials
are as follows: The capsule ablator is Be, a plastic (CH) liner
surrounds the laser entrance hole, the hohlraum wall is Au-U
with a thin outer layer of 80% Au-20% B (atomic ratio), and
the initial fill gas is 80% H-20% He. The lower-Z compo-
nents are included in the last two mixtures to reduce SBS by
increasing the ion Landau damping of the acoustic wave.

We performed DEPLETE calculations, with both SRS and
SBS, at several times and over 381 ray paths for each time.
One must take an appropriate “average” over the rays to
characterize the LPI on a cone. Regarding NEWLIP gains, this
has led to several approaches. These include averaging the
gain, finding the maximum gain, or averaging ¢“’. This last
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FIG. 9. Nominal intensity at best focus for 285 eV NIF ignition design
(“NIF example”), found by dividing the laser power per quad by the focal
spot size. The peak intensity corresponds to 6.9 TW/quad.

method stems from assuming there is no pump depletion and
noise sources are independent of scattered frequency; in this
limit, the reflectivity should be roughly proportional to .
However, this averaging, and a fortiori taking the maximum,
can be dominated by gains that are larger than physically
allowed by pump depletion or other nonlinearity. One can
attempt to include pump depletion via a Tang formula for G;
at each w,.28

DEPLETE allows for more physical ray-averaging
schemes. To the extent the transverse intensity pattern of a
cone is uniform, each ray represents the same incident laser
power. Averaging DEPLETE’s ray reflectivities then measures
the fraction of incident power that gets reflected. Pump
depletion is of course included, which limits backscatter
along high-gain rays in a physical way. The reflectivities and
scattered spectra plotted here are simple averages over the
rays.

The reflectivities for several times near peak laser power,
for the 30° cone, are shown in Fig. 10. The results for three
different cases are presented. First, the solid lines give the
reflectivities computed with the unmodified DEPLETE equa-
tions. To quantify the role of reabsorption of scattered light
in the target, we reran DEPLETE with «;=0. This leads to the
dashed lines. Finally, to bound the enhancement due to
speckles, we plot the results when I'; is doubled (and
k; #0) as the dotted lines.

The spectra of escaping SRS and SBS light (averaged
over rays) are shown in Figs. 11 and 12. The SBS feature at
a wavelength shift of 5-8 A comes from the Be ablator
blowoff. A much weaker feature appears from 12 to 13 ns at
12-15 A, and occurs in the gas fill. The SRS spectrum is
more irregular, showing two main features separated by
~20 nm that move to higher \; as time increases. In addi-
tion, there are narrow features at higher A that originate near
the hohlraum wall; these would be reduced in a ray-averaged
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FIG. 10. (Color online) DEPLETE SRS and SBS ray-averaged reflectivities 7,
for the NIF example. Solid lines are the nominal case (reabsorption and I,
unscaled), dashed lines are the nominal I'; but no reabsorption of scattered
light (k;=0), and dotted lines are 2 X I'; with reabsorption.

gain, since the exact \; active for each ray depends sensi-
tively on conditions near the wall and therefore varies from
ray to ray. Reabsorption strongly suppresses these high-\;
spikes, as is seen in the SRS spectra with and without reab-
sorption at t=13.75 ns in Fig. 13. Collisional plasma-wave
damping, currently not in DEPLETE, may reduce the high-\,
scattering (the Landau damping of the low-k,\p, plasma
waves is negligible).

Besides backscatter, DEPLETE also provides the pump in-
tensity Io(z) along each ray. This indicates how much laser
energy is transmitted to a given location, which is a crucial
aspect of whether LPI degrades target performance. In cases
in which the backscattered light undergoes significant ab-
sorption as it propagates out of the target (as happens to SRS
for the design analyzed here), the measured reflectivity can
understate the level of LPI. The laser transmission can reveal
this fact. Figure 14(a) presents I, averaged over all the rays,
at a given n,. This is a 1D presentation of how much energy
reaches a given density, although in the full 3D geometry
different rays reach the same n, at different locations. I, with
just pump absorption, as well as the DEPLETE solutions with
pump depletion for the nominal case and 2 X T}, are shown.
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FIG. 11. (Color online) SRS streaked spectrum i,; for NIF example, nomi-
nal case (k; #0, 1 XT')).

Pump depletion is barely discernible in the nominal case, but
is significant in the 2 XT'; case. For instance, in the latter
case I, at n,/n,,=0.2 is only 60% of its absorption-only
value. The wavelength-integrated SRS and SBS /; are shown
in Fig. 14(b), and the scattered spectra versus n, are shown in
Figs. 15 and 16. SRS in particular develops at several differ-
ent densities, corresponding to different wavelengths, as can
be seen in Figs. 13 and 15.

SBS spectrum i1(z=0) {decibels}

t (ns)

0 5 10 15 ~&0
M.sbs — Ao (Ang.)

FIG. 12. (Color online) SBS streaked spectrum for NIF example, nominal
case (k; #0, 1 XT'). The white-yellow streak from 5-8 A occurs in the Be
ablator, while the weaker feature from 12 to 15 A occurs in the gas fill.
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SRS spectrum, t = 13.75 ns
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FIG. 13. (Color online) DEPLETE SRS spectrum at time 13.75 ns for NIF
example, smoothed over =1 nm. The black solid and red dashed lines are
computed with (k; #0) and without (x;=0) reabsorption of scattered light,
respectively.

IX. CONCLUSIONS AND FUTURE PROSPECTS

We have derived a 1D, steady-state, kinetic model for
Brillouin and Raman backscatter that includes pump deple-
tion, bremsstrahlung damping and fluctuations, and Thomson
scattering. This model is implemented by the code
DEPLETE, which we have presented as well. This work ex-
tends linear gain calculations, by including more physics
while retaining their low computational cost. In particular,
DEPLETE provides the scattered-light spectrum and intensity
developing from physical noise, which can be compared
against more sophisticated codes and experiments. The trans-
mitted pump laser along the profile is also found, which is
important for assessing an ICF target design, especially when
reabsorption of scattered light reduces the escaping backscat-
ter from its internal level.

We presented benchmarks of DEPLETE on contrived, lin-
ear profiles, as well as analysis of OMEGA experiments and
a NIF ignition design. The benchmarks reveal the deficien-
cies of linear gain, namely the neglect of TS, pump deple-
tion, and reabsorption. Comparisons with PF3D provide a
cross-validation of the two codes in a regime where they
should agree. The OMEGA SBS experimental data, as well
as PF3D simulations of these shots, show much more reflec-
tivity than DEPLETE gives, for intensities where pump deple-
tion is weak. This enhancement is due to speckle effects. We
showed that an upper bound on this enhancement is given by
doubling the DEPLETE coupling coefficient I';, which comes
from considering the phase-conjugated mode in an RPP-
smoothed beam. The ignition design analysis gives reason-
ably low backscatter levels for the nominal laser intensity
and including reabsorption, with SRS dominating SBS.
However, if reabsorption is neglected, or especially if T'; is
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FIG. 14. (Color online) (a) Laser transmission for NIF example at 12.5 ns
(peak power): black solid curve is the nominal DEPLETE solution with pump
depletion, red dashed curve is with just inverse-bremsstrahlung absorption,
and black dotted curve is the DEPLETE solution with 2 X T';. (b) SBS (blue)
and SRS (red) scattered intensities for the nominal DEPLETE solution. Calcu-
lation of intensity at a given n, is described in text.

doubled, the backscatter appears more worrisome. The laser
transmission supports these conclusions.

Ray-based gain calculations have been used for some
time to model LPI experiments, and DEPLETE can provide
more detailed comparisons. An early application of gain to
hohlraum targets is Ref. 42, where hohlraums filled with CH
gas were driven by laser beams with and without PS and
SSD. Without SSD, reasonable agreement was found be-
tween measurements and the time-dependent SBS gain spec-
trum. However, there was a large difference in peak SRS
wavelength between measurements and the gain spectrum,
which may be due to laser filamentation changing the loca-
tion of peak SRS growth.

Several future directions exist for DEPLETE. One is to
include an “independent speckle” model for gain enhance-
ment, where one solves the DEPLETE equations over a
speckle length for a distribution of pump intensities and then
redistributes the power. This would not describe correlations
among axial ranks of speckles, caused, e.g., by phase conju-
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FIG. 15. (Color online) SRS spectral density i; vs n,/n.y and \;, in decibels,
at 12.5 ns (peak power), for NIF example.

gation. DEPLETE also enables some new diagnostics and ap-
plications. The pump and scattered intensities found by DE-
PLETE can be used to compute the local material heating rate
due to absorption. This could be incorporated into a hydro-
dynamic code, thereby coupling LPI to target evolution in a
self-consistent, if simplified, way. In addition, the plasma-
wave amplitudes found by DEPLETE can be compared against
thresholds for various nonlinearities to assess their relevance,
and may allow estimation of hot electron production by SRS.

Despite its promise, there are limits inherent to any 1D
or ray-based approach, stemming from 3D wave optics (e.g.,
diffraction, speckles, filamentation, and beam bending). A
3D paraxial code called sLIp,** which like DEPLETE operates
in steady state and uses kinetic coefficients, is being devel-
oped. This model is in some sense intermediate between DE-
PLETE and PF3D. 1D codes like DEPLETE still have a valuable
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FIG. 16. (Color online) SBS spectral density iy vs n,/n, and Nj—\g, in
decibels, at 12.5 ns (peak power), for NIF example.
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role. They can analyze hundreds of rays, using hundreds of
scattered wavelengths, in ~ minutes, thus allowing designs
to be rapidly analyzed and compared. The resulting time-
dependent spectra allow for contact with experimental diag-
nostics, and are frequently needed, for example, to choose
the carrier k and w for PF3D.

Laser-plasma interactions have proven to be a very chal-
lenging area of plasma physics, owing to the variety of rel-
evant physics and extreme range of scales involved. This has
led to an equally extreme range of modeling tools, from 1D
gain estimates to 3D kinetic simulations. By fully exploiting
these tools, each with their uses and limitations, a more com-
plete picture is emerging.
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APPENDIX A: NEWLIP

In this appendix, we document the laser interaction post-
processor NEWLIP, of which DEPLETE can be viewed as an
extension. The equations underlying NEWLIP are

dzl()(Z) =- K()I(), (Al)

d.iy(z,01) == LI, (A2)
The first of these is Eq. (53) with no pump depletion
(m,=I';=0), and the second is Eq. (54) with no bremsstrah-
lung or TS («x;=2,;=7,=0). That is, only the absorption of
the pump, and coherent coupling to scattered light waves, are
modeled. The boundary conditions are I4(z=0)=1I,; (the
known pump at the laser entrance) and i;(z=L,,w;)=1. We
thus solve for a unit scattered-wave boundary seed, which is
permissible for this linear system.
We readily solve Egs. (A1) and (A2) to find

IO(Z) - IOLe—dez’Ko(z’)’ (A3)

i1(z) = 1), (A4)
LZ

G/z) = f dz'T (2" )Ip(z"). (AS5)
z

G/(z) is the linear intensity gain exponent, and is NEWLIP’s
main result. The total gain across the profile is G;(z=0).

The numerical computation of G, suffers from the prob-
lem of narrow resonances, similar to DEPLETE. The coupling
coefficient I'; [see Eq. (16)] is sharply peaked near the reso-
nance point where Re e=0. NEWLIP addresses this challenge
in a way analogous to how DEPLETE handles the coupling-
Thomson step, as outlined in Appendix B. In particular, the
integration of Eq. (A2) from z" down to z"~! can be cast in
the form

Phys. Plasmas 15, 102703 (2008)
n—1 n—1
1

1 z
In - =ImSO, SOEf

I 7"

dzg, (A6)
€

with S=-IfTgx.(1+x,). Although S(z)/e(z) is sharply
peaked near resonance, S(z) and e€(z) are themselves
slowly varying with z. We approximate S(z)=~S""!?
+(z=7z""Y2)AS/Az (and similarly for €), with X"~ 12= (X"
+X" /2 and AX=(X"-X""") for some quantity X. With
this representation, and X=X"""2/AX, we find

AzAS oA @t
So= Ae |:1+(6—S)1n7:|.

(A7)

This formula is valid provided either |Re é/=1/2 or
Im €+ 0. For accuracy, we also want |A€| to not be too small
(which obtains, e.g., for a flat profile). We therefore require
|é] to be less than some large number. If any of these
conditions does not hold, we simply assume S=S"""2 and
e=€""""? across the cell to find

n—1/2

So=Az"—

i (A8)

APPENDIX B: NUMERICAL SOLUTION
OF THE COUPLING-THOMSON STEP

This appendix provides a derivation of Eq. (66), the so-
lution for i; in the coupling-Thomson step. We must solve
Eq. (59), from z" down to z"~!, with I,=1I{ and all coefficients
except |e* evaluated at z~'/2. We write this equation as

. K +K[‘i1
ﬂz11=——7|6|2 , (B1)
KT = Ing—l/Zgr;'—l/Z’ KF Eflgl—wgz—]/Zg?‘—l/Z. (BZ)

As mentioned above, the principal numerical difficulty is that
|€|~2 is sharply peaked near resonance (Re €=0). Since Re €
generally passes through zero slowly, we Taylor expand €
within each zone and solve the resulting system analytically.

Define the zonal average and difference X"~ 2= (1/2)
X(X"+X" 1) and AX=X"-X""! for the quantity X. We ex-
pand e about the zone center z"~"'? to find

e~ €12+ Ae, (B3)
712
j=—. B4
Z Az (B4)
We can then write
e’ = € +[Ael*(2 - ), (BS)
€, = |Ad? Im[ €2 A€, (B6)
20=—|Ael > Re[€2A€*]. (B7)
The linear change of variable
|Ad .
s= (e %) (BS)
VE;
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transforms Eq. (B1) to

BT+BFi1

diy=———— B9

st 1 +S2 ( )

KT[‘AZ

B.r=—""">—7. B10

gk |Im[€”_1/2AE*:|| ( )

A second change of variable to w=atan s yields

(9wi1=_(BT+BFi1)' (Bll)

This equation is solved to give the result used in Eq. (66),
(B12)

n—1 n, o+ \ , BrAw :
3 =(ll+l'r)er "=l

Aw, = atans” — atans”" "' (B13)

i,=B,/Br is also given by Eq. (50).

If Ae is sufficiently small (or zero, as for a flat profile),
we do not use Eq. (B3), but instead e~ €'~/2. We can then
immediately solve Eq. (B1) to find

i7" = (i + i Jexp[Kr| €2 2Az] — i (B14)
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