Schrodinger’s Cyber-Cat: How to Simulate
Quantum Mechanics on a Computer

David Strozzi

Department of Physics,

Princeton University

Abstract

We consider three different schemes for simulating quantum mechanical systems
with computers. This is a traditionally difficult problem, with all known algorithms
for modern computers needing unattainable storage and processor resources for the sim-
plest simulations. For example, simulating the motion of n particles on a d-dimensional
spatial lattice with [lattice sites on a side requires ~ [storage space and processor
time. Since one of the principal differences between classical and quantum physics is
that the latter is probabilistic, one is tempted to design a direct simulation, or emula-
tion, of a quantum system on a probabilistic classical computer. However, the nonlocal
nature of quantum mechanics, and the impossibility of reproducing its predictions with
any hidden-variables theory, makes such an emulation impossible. In the last few years,
algorithms have been developed for a quantum computer, or one which as a physical
device behaves quantum-mechanically, that can simulate many-particle systems with
an exponential performance improvement over classical algorithms. We will study such
an algorithm developed by Boghosian and Taylor that performs the same simulation

outlined above using ~ I¢ memory and processor time for n < I%.

1 Overview

Simulations of physics, from rocketry to plasmas to the weather, have always been an impor-
tant use of computers. Unfortunately, simulating quantum mechanics has invariably been
inefficient, with the needed time and memory growing exponentially with the size of the
studied system. All of these algorithms have been devised for classical machines, whose
physical parts are such that quantum mechanics may be neglected. The probabilistic nature
of quantum mechanics suggests that a classical, probabilistic computer may be able to sim-
ulate quantum systems more efficiently. Such a machine would not return the same output
every time it runs a given algorithm on the same output; instead, the distribution of output
after many runs would approach that of the quantum system being simulated. This hope
is shattered by the fact that quantum mechanics is not a local theory, in that no classical
hidden-variable theory can reproduce its results. “Quantum computers,” or devices domi-
nated by quantum effects, offer new possibilities for efficient simulations of quantum physics.
Quantum algorithms have developed which simulate quantum systems with memory and
time that is exponentially better than classical computers.

In this paper, we compare the simulation of quantum mechanics on these three kinds of
computers. We develop a simulation of nonrelativistic particles governed by the Schrodinger
equation on a deterministic classical computer and estimate its memory needs and running
time. We will then study the nonlocal nature of quantum theory via the EPR paradox and
Bell’s inequalities, and see why they prevent us from emulating a quantum system on a prob-
abilistic classical computer. We then explore the general structure of a quantum computer,
and closely study Taylor’s exponentially-faster simulation of the motion of such particles.
Our motivation here is threefold. First, an efficient qunatum simulation is an intrinsically
interesting result, with significant practical ramifications if ever implemented experimentally.
Because this simulation runs on a quantum computer, studying it will elucidate the basic
ideas of quantum computation. In addition, trying to simulate quantum physics will deepen

our understanding of quantum theory itself.

2 Simulations on a Deterministic Classical Computer

Let us now develop an algorithm for simulating quantum mechanics on a classical, determin-
istic, digital computer. A deterministic computer is one which, given a certain input and
algorithm, will always return the same output. As a physical device, this means that spec-
ifying the current state of the computer and its input will uniquely specify how it evolves.
It is possible to conceive of computers which do not appear to behave deterministically but
obey classical physics on a microscopic or “hidden” level. We will clarify these concepts and
consider the prospects for quantum-mechanical simulations on such a device in detail below.

I stipulate the computer is digital to distinguish it from an analog machine. For example,
one could easily build an analog integrator from just a capacitor and a resistor. While
analog computers have been used in the past and can be blindingly fast, their circuitry must
be specifically tailored to the computation they perform. Analog computers are therefore
single-purpose, as opposed to the digital computers in use today which can execute a huge
variety of programs. In fact, the theory of algorithms is based upon the assumption that a
kind of computer called a Turing machine can compute any algorithm we’d be interested in
computing. A full discussion of Turing machines is not important here, and the interested
reader should consult [1]. The relevant result from computer science is that digital computers
can serve as Turing machines, and can therefore calculate a wide range of algorithms. The
basic functions performed by a digital computer are logical operations acting on two bits
(or binary digits), or 2-bit logic gates. Since any 2-bit logic gate can be constructed from
a series of one logic gate (such as the NOT AND or NAND gate) [2], digital computers
are easy to construct: simply figure out how to build this gate, and then wire a large
number of them together. While it is straightforward to write a calculator or a text editor
for a digital computer, implementing them on an analog computer requires developing two
specific analog circuits. For these reasons, analog computers have fallen by the wayside, and
only a discussion of digital computers would relate to current technology.

Another difference between analog and digital computers is that they store continuous

and discrete values, respectively. Following standard practice, we assume digital computers
store information as a series of bits (ie, a string of 0’s and 1’s). We store each bit in a
physical system that has only two accessible states, such as a switch being on or off, or the
voltage on a transistor being HIGH or LOW. Since we can arrange a finite number of bits
a finite number of ways, the value represented by these bits varies over a finite, discrete
range. Therefore, to simulate any physical system on a digital computer, we must find a
discrete, finite model for space and time so that we can store space and time coordinates.
We treat space as a d-dimensional array of points spaced Ax apart with [lattice sites to a
side, similar to a crystal lattice. Our time jumps discontinuously in steps of At and starts
at to. We choose units where A = At = Az = 1; we can do this since we have three units to
scale: mass, length, and time.

Just as we need to discretize space and time, we must also find a way to store the
wavefunction ¥ of the simulated system on a digital computer. Recall that ¥ is a complex-
valued function of some set of variables needed to completely specify the system’s state. For
a single particle, we will use its three spatial coordinates to specify its state (along with
a spin wavefunction which we ignore here), so that ¥ is in effect a function of the spatial
coordinates and time. However, when considering a multi-particle system, ¥ is evaluated
not at every point in space but at every point in the configuration space of the whole system
{ry,ry,...,r,}, where r; is the position of the i particle. One way to represent ¥ on our
computer is to use the positions of the particles to specify their state, and record the value
of ¥ at every point of this dn-dimensional lattice. To store the values of ¥, we can treat
the complex plane as a finite, two-dimensional lattice just as we did space, and then record
a complex number as a pair of real numbers (the real and imaginary part).

Consider the simple case of a particle moving on a 1-dimensional lattice [points long. It
will start at some initial location xy at time t,, and then diffuse via the Schrédinger equation.
A measurement of the system will find the particle at one lattice site, and all the other ones

unoccupied. W evaluates to a complex number at each lattice site, so we need to specify

the amplitude of ¥ at all [lattice sites. The time evolution of our nonrelativistic system is

governed by the Schrédinger equation, which in 1 dimension is

0zt 107)
i = Hlz, t|¥[z, t] = 5oz T Vi]x]U', (1)

where m denotes the particle mass and H the Hamiltonian operator. Since our space and
time are discrete, we can simplify the notation by writing ¥; ; = U[zg + i, + j] (recall
that we’ve set the x and ¢ spacing to 1). Eqn. (1) involves continuous functions and their
derivatives, so we must make a discrete approximation to this equation in order to simulate
it on our computer. Besides evaluating ¥ and V at discretely-spaced lattice sites, we also

must replace derivatives with finite fractions:

oV[z, 1] _ lim Uz, t + At] — [z, t]

ot A AL — \Iji,j+1 — \Ijz,] (2)

Making a similar substitution for g—‘f, we can write a discrete version of (1):

-10

—1
Tigrr—Wij = 5o (Wiy1y—Wij) +V[z]¥;; = o (Wiyo;—2Wp1+ 0, 5) + Vx| . (3)

Solving for U, ;., we have

-1

Uijrr =V — 5

(Wito; — 2Wip, + Vi) + Viz]¥, ;. (4)

This formula gives us an algorithm to calculate how W evolves over time on a digital,
classical, deterministic computer, which is precisely a simulation. What is the running time
for such an algorithm? To find ¥, ;11, we must apply eqn. (4) for each of the / lattice points
of our 1-dimensional space. Since the number operations 7 needed to evaluate eqn. (4)
does not depend on ¥ or [, the running time is 7/. It is common practice in computer

science to neglect constant factors and only keep the fastest-growing term when estimating

'Here, as in Mathematica, [...] denotes the argument of a function, (...) denotes grouping.

an algorithm’s running time. Doing that here, we approximate the running time of our
simulation as [.

We can now generalize our analysis to d-dimensional space and n particles. The only
difference in d dimensions is that the number of lattice sites is {¢ instead of [: we can
think of the space as a direct product of d linear lattices. Since we need to store the value
of U at each point on the lattice, we need [¢ values. The wavefunction of a system of n
distinguishable particles is a linear combination of tensor products of single-particle basis
states: W = Y ¢iyiy.in i, @ Vi, @ ... @ 1y, . Since there are [? possible single-particle states,
we must keep track of [?-[¢- ... (% = [amplitudes c. To advance ¥ in time, we need
to apply eqn. (4) as before. If the particles are identical, we must either symmetrize or
antisymmetrize ¥, depending on whether we have boson or fermions. This constraint will
reduce the number of independent basis states for ¥, and we will only need to store ~ %l”d
coefficients. This will not stop the exponential explosion of the memory needed, so we will
assume the particles are distinguishable for simplicity.

Unfortunately, the amount of storage space and running time needed for such a simulation
is ridiculous. If we have 20 particles moving on a 3-dimensional lattice with 10 sites on each
side, this requires [= 10% complex numbers. If we allocate 32 bits (4 bytes) for each
real number (as many compilers do by default), we would need 2 - 32 - 10%° = 64 - 10%
bits to store ¥ (for indistinguishable particles this becomes ~ 10*?, which is still huge).
Considering a terabyte holds (2'%)* - 8 ~ 10'3 bits and that the world’s largest databases
are on the order of terabytes, building a machine with enough memory for our simulation is
unthinkable. Since the running time is proportional to the number of amplitude coefficients
we need, we must perform ~ 10% operations to advance the simulation one time step. The
fastest computers available today perform ~ 10'? instructions per second, again making our

simulation impossible.

3 Simulations on a Probabilistic Classical Computer

Our attempt to simulate quantum mechanics with reasonable computing resources failed
miserably. However, some very complex classical systems have been successfully simulated
on computers, such as the solar system. What differences between classical and quantum
mechanics make it so hard to simulate the second but easy to simulate the first? Probably the
most-emphasized difference between the two is the probabilistic nature of quantum mechan-
ics. Quantum mechanics only allows us to predict the probability we will observe a system
in a given state; on the other hand, classical physics tells us precisely how a system will
evolve given its initial state. This suggests we consider using a computer that itself behaves
probabilitistically to simulate quantum systems. A “probabilistic” computer is one which
does not always return the same output when running the same algorithm on the same input.
Such a machine appears in computer science as the notion of the nondeterministic Turing
machine [1]. In this section, we will study the prospect of efficiently simulating quantum
mechanics on a nondeterministic Turing machine, or a classical probabilistic computer.

If our computer itself behaves “classically,” how can it be probabilistic - won’t the com-
puter, as a physical system, evolve deterministically from its initial to final state? One way
to build such a machine is to use a statistical or chaotic system. For instance, consider a box
with a mole of gas molecules in it. Classical mechanics holds that this system is deterministic
on the level of molecular motion. However, it is impossible for us to analyze a system of
~ 10%® particles by keeping track of their individual trajectories. We instead look at macro-
scopic properties such as temperature and pressure. We can use this apparatus to perform
probabilistic computation, say by counting the number of molecules which strike a small
region of the container wall in a fixed time. What separates such a probabilistic system from
a quantum system? As we shall see below, the difference is that quantum systems are non-
local, while classical systems are local. While there are variables which cause a probabilistic
classical system to evolve deterministically, they remain “hidden” from us, causing us to see

the system as probabilisitic. No such hidden variables can underlie quantum mechanics, so

a probabilistic and local computer cannot accurately simulate quantum systems [3].

Since the resources necessary to store all the independent components of the wavefunction
are unattainable, we will instead try to construct a computer which when observed yields the
same probability distribution as the quantum system being studied. In effect, we are looking
for a probabilistic classical system which can replicate all the behaviors of a quantum one.
To do this, we will interpret our computer being in a certain physical state to represent the
quantum system being in a certain state ¥. We will then run our computer many times,
and know to within a certain statistical accuracy the probability that the quantum system
evolves to a certain final state. In general, the computer will start in some initial state ¥
(since the state of the computer corresponds to the simulated system being in some state
U, we will for simplicity describe the state of the computer by the W it represents). There
will be some set, of states to which the computer can evolve, with each transition occurring
with some probability. In the next cycle, there will be some new set of target states, with
the probabilities of transition depending on the current state ¥y, and so on.

We can formalize this evolution as follows. Suppose we simulate a single particle moving
on a discrete line of [lattice sites. Our computer could consist of a set of two-state physical
systems, with each one corresponding to the presence or absence of a particle at a specified
lattice site. The state of the particle is completely specified by the state of the system at
each lattice point. Using s; to denote the state of the i** lattice site and P for probability,

we have

P ={sl.s}l = Y (PIY; = {si...si}]P[{s1...51} = {s]...51}]) . (5)

Vi={s1...51}
Since P[sy...s; — 8}...5)] = P[sy — s|¥;] % ... ¥ P[s) — s)|¥;] = [I._, Plir, — s,|¥,], where

|¥,; denotes given a certain U,

P = (s} = T (P[\m] Pls — su\m) . (©)

v; k=1

This approach accurately represents what physically happens in a quantum system: given
an initial state, the system will evolve with some probability to one of a set of final states.
However, when we specify that our probabilistic computer is classical, and therefore local,
this simulation cannot reproduce quantum effects.

We will see why this is by discussing the Einstein-Podolsky-Rosen (hereafter EPR) para-
dox and Bell’s inequalities, which clearly demonstrate the nonlocality of quantum physics.
The EPR Paradox was proposed in 1935 to show why quantum mechanics was unsatisfactory.

Y

EPR assert that any acceptable physical theory should be “complete,” meaning any predic-
tion that can be made with unit probability must correspond to an element of physical reality
[4]. For example, classical mechanics dictates that momentum is conserved. Accordingly, if
an initially at-rest rocket explodes into two pieces and I observe half of it with momentum p,
I know with certainty that the other half has momentum —p. The completeness of classical
mechanics would imply that there exist a physically real entity corresponding to this definite
prediction (here, it would be the half of the rocket with momentum —p). The other property
EPR demand of any physical theory is locality, or that no effects propagate instantly (ie,
there is no action at a distance).

We illustrate the EPR paradox by studying a system with no total spin which decays into
two spin-1/2 particles, as suggested by D. Bohm. Suppose the particles, labeled 1 and 2,
travel in opposite directions away from the common source. We know that the total spin of
the system is 0, so measuring S, ; (the z-spin of 1) immediately tells us S, o (it will be =5, ;).
Since we can predict this fact about 2 with unit probability, completeness implies a real entity
exists which corresponds to 2 having this z-spin. We know this certain fact about 2 instantly
after making our observation, so the corresponding real entity must exist immediately after
we measure 1. However, if we wait for 1 and 2 to be far apart before measuring, and if this
real entity came into existence exactly when we make our measurement, we would have an
instantaneous effect. Therefore, the real entity must exist before we make our measurement.

Note that regardless of the value we get for S,;, S.» will have a definite value, so some

corresponding real entity must exist before we measure 1.

The problem occurs if we were to measure S, ; instead of S, ;. Following the same logic
as above, this would tell us exactly the value of S, 5. Therefore, some real entity exists before
we measure S, ; which corresponds to S; 5 having a definite value. However, S, and S, ; do
not commute, so if we measure S, ;, we induce an uncertainty in S, ; and also in S, 2. But,
we just established that there must be a real entity corresponding to S, having a definite
value before we measure 1! If such a real entity exists before we make our measurement, and
if we perform the same experiment many times, how could the observer at 2 get different
values of S; 27 Quantum mechanics must therefore be incomplete or contain actions at a
distance.

The so-called EPR Paradox has sparked a 50-year debate about the nature and validity
of quantum mechanics. Physicists who agree with EPR have searched for a theory which
reproduces the statistical predictions of quantum mechanics, but is still local and complete.
Such theories have been dubbed “hidden-variable” theories, since they rely on some other
physical quantities not yet observed determining the value of the observed quantum variables.
In other words, there would exist some classical variable A which completely determines the
values of observables such as spin (having a set of such A’s would not change the spirit of
our analysis). Not knowing about this variable, we would naively think that spin and other
quantum observables behave probabilistically. However, a result known as Bell’s inequalities
constrains the statistical predictions of any hidden-variables theory in ways that quantum
theory violates. With the experimental verification of these forbidden predictions, physicists
have by and large rejected the hope of finding a hidden-variable quantum theory.

Suppose there are two observers who will measure the spin of 1 along some direction a
and of 2 along 13, both in the plane perpendicular to the motion of the particles (see figure 1).
Denote the results of our measurements by A and B respectively, both of which can only
take on values of +1 (when we measure spin along an axis, we get up or down. We also

neglect the factor of f/2 that would normally be here). If our hidden-variable theory is

10

S=0 system
decays

particle particle
1 2
— |- — o« >o —

Figure 1: Diagram of EPR experiment

complete, the value of A should be sufficient to determine the results of our measurement.
If we stipulate that each observer chooses the direction along which to measure instantly
before measuring, then the local nature of our theory requires that A and B not be functions
of b and a, respectively (that is, the direction which the other observer chooses). This
reasoning implies that A = A[a, A\] and B = B[B, A]. Also, the fact that the total spin of the
system is zero along any direction implies A[a, \] = —B[a, A\]. Let us further assume that
the distribution of A is normalized to unity: [p[A\]d\ = 1. If we measure A and B many

times for fixed values of & and b, the average value is

/p B[b, AJdA. (7)

We use C because it reflects the correlation between the two measurements: C' is 1 if the
measurements agree (both up or both down) and -1 if they do not.

The crucial step in establishing Bell’s inequalities is to consider the classical correlation

A~

difference Ac = C[4,b] — C[a, &], where b # &. From eqn. (7), we have

AC—/p Blb, \] — A[a, \|B[&, A])dA

- _/p a, AJA[b, \|(1 + A[b, | B[&, A])d. (8)

We arrived at the last line by using (A[b, A])2 = 1 for any direction b. Recall from analysis

11

that | [flz]dz| < [|f[x]|dz. Applying this to eqn. (8),

Acl < [IpIN] [Ala ALBIB, Al[(1 + A[, A]Ble, A)) ax
- /p[)\](l + A[b, \|B[e, \])dA
—/p)\]d)\—i—/p A[B, AIB[, A])dA = 1 + C[b, &]

= |Ac[a, b, <1+ C[b, ¢ (9)

We have used the fact that p[A] is normalized to unity, that A only takes on values of +1,
and that AB is no less than -1 (so that 1+AB is nonnegative). Eqn. (9) is one of a family of
such relations known as Bell’s inequalities, first derived by J. S. Bell in 1964 [5].

We will now analyze the same experiment from the quantum standpoint, and see that
quantum mechanics predicts violations of eqn. (9). Our system consists of 2 identical spin-
1/2 fermions with a total spin of 0, and must therefore be in the singlet state. Choosing «
() to denote the 7 spin-up (-down) eigenstate and Z = &, the system’s overall wavefunction
X = % (182 — fras). Let S, 1 denote the spin of particle 1 along the direction 4. We know
that S, = S-a = o[l] - &4, where o contains the three Pauli spin matrices and we again
neglect factors of 7/2. We wish to make a joint measurement of the spin of 1 along & and
2 along b. As before, we consider an observable called the correlation, which returns 1 if
the two measurements agree and -1 if they do not. The operator for correlation is then

o[1] - 40[2] - b. Defining C to be the expectation value of such a joint measurement, we have

Cla, b] = (x|o[1] - a0(2] - | x)

= {012 — 21 021 (022080 + 04280 0)| 01 By — 2 B1)

Cl[a,b] = —cos 6. (10)

12

to arrive at eqn. (10), note that C has 4 terms involving o, 10, », which together yield — cos 6.
Since o, acting on a spin-z eigenstate returns +1 on a 50-50 basis, the 4 terms involving
0,109 vanish. To compare this with Bell’s inequality, we calculate Agla, B, ¢] = Cla, B] —
Cla, €] = —cos by, + cosb,.. Choose O, = 7/3 and 0,. = 2w/3. Thus, Ag = — cos[r/3] +
cos[21/3] = —1, and 1 + C[b, &] = 1 — cos[r/3] = 1/2. For these values of 6, and 6.,

Agla, b, el =1>1+¢C[b,&] =4, (11)

in violation of Bell’s inequality.

Eqn. (11) has profound implications for quantum theory. The only assumptions we made
in deriving Bell’s inequality (eqn. (9)) was that there exists a classical analog of the wavefunc-
tion, A, which completely describes the system, and that the system’s evolution was local.
This allowed us to assume that A did not depend on B, and write A = A[\, a]. If quantum
mechanics violates Bell’s inequality, then it violates the assumption of locality. The beauty of
Bell’s inequality resides in its production of a parameter A whose measurement would either
invalidate quantum mechanics, or rule out all possible hidden-variable theories. Extensive
experiments performed by A. Aspect in the 1980s, using photons and polarizers instead of
spin-1/2 particles, have vindicated quantum theory [6]. Nonetheless, the idea of a nonlocal
universe is very counterintuitive and even disturbing. Heisenberg asserted that a nonlocal
theory is unsatisfactory if it allows us to transmit a signal, or communicate, instantaneously
[7]. However, when we observe the spin of 1, we collapse the entire system’s wavefunction
instantly, but we cannot control what value we measure, and therefore what value S, 5 as-
sumes. Quantum mechanics therefore does not allow faster-than-light communication, which
led Heisenberg to conclude it is consistent with special relativity.

By showing that no hidden-variable theory can reproduce the results of quantum me-
chanics, we have also destroyed our hope of constructing a probabilistic, local computer
that can simulate quantum mechanics! When we say a classical system is probabilistic, this

means that deterministic laws govern its evolution; we just aren’t keeping track of them.

13

Thus, when we reset our gaseous computer with the same macroscopic parameters, we still
measure different numbers of collisions during each run. We believe that there are hidden
variables, namely the precise microscopic positions and momenta of the gas molecules, that
cause the system’s evolution to actually be local and causal. Bell’s inequality shows that
no such hidden-variable theory can be at work underneath quantum mechanics. If we could
emulate a quantum system with a probabilistic classical computer, we would in effect be
basing quantum mechanics on a hidden-variable theory. Our proposed emulation would not

be inefficient; it would be wrong.

4 Simulations on a Quantum Computer

So far, we have tried to use both deterministic and nondeterministic classical computers to
simulate quantum mechanics. We will now consider computers whose behavior is dominated
by quantum mechanics. As we showed above, quantum systems are not governed by any
local theory, so the difficulty encountered with trying to use a probabilistic classical computer
disappears. We will present an algorithm which simulates the motion of n nonrelativistic
particles on a lattice in a time proportional to ¢, as long as n < [?. This represents an
exponential improvement over our simulation on a deterministic classical computer, which
requires storage space and running time of ~ (",

The machine we will study is a quantum version of the digital computer, or Turing
machine. The data in such a quantum computer is stored in discrete units called quantum
bits, or “qubits.” The number of qubits we can store in a quantum system, ¢, is determined
by dig = 29, where dgy=dimension of the system’s Hilbert space. We usually consider a set, of
systems which can be in only two possible states, labelled |0) and |1). A common illustration
of this is an array of spin-1/2 particles. Since each particle can be in either the spin-up or
spin-down state, a system of m such particles requires a 2™-dimensional Hilbert space, so

the system can store m qubits.

We know how to store data, but how can we manipulate it? In analogy with digital

14

computers, we will operate on data with logic gates, and build all our algorithms from them.
For simplicity, we will only consider quantum logic gates that act on two qubits and return a
third. Acting on data with a logic gate involves performing a certain physical process on the
data. In this light, computers are nothing more than devices for doing physics experiments -
we humans interpret the initial conditions, the experiment being done, and the final state
to represent certain information and algorithms. On a quantum computer, a logic gate
manifests itself as the evolution of a quantum system subjected to a certain Hamiltonian. As

a quantum systems, our quantum computer evolves according to the Schrodinger equation:

i = Hy[z,t] = %VQ\II + V[z]W. (12)

Since this equation involves the first time derivative of ¥, we can use it to determine ¥ at
any time t if we know ¥ at some prior time t,. We can then construct an evolution operator
U such that W[t] = Ulty, t|¥[tg]. Any elementary quantum mechanics text, such as [8], shows
U is related to H by

Ulto, t] = exp[—iH (t — to)]. (13)

Since H is a Hermitian operator, and the exponential of any Hermitian operator multiplied
by ¢ is a unitary operator, the evolution operator U is unitary. All unitary operators are
invertible, implying that the evolution of a quantum system must be reversible. In particular,
quantum logic gates must be reversible processes. There exists a set of reversible gates, NOT
(1-bit), CONTROLLED NOT (2-bit), and CONTROLLED CONTROLLED NOT (3-bit),
which can generate all 2-bit logic gates [2]. This makes quantum computers in principle quite
powerful, since knowing how to build these three gates and store qubits is enough to build
a computer that can perform a huge class of algorithms. See [9] for a thorough overview of
quantum computing.

We now turn to the specific problem of simulating a quantum system on a quantum

computer. We start with the simple case of one free particle moving on a lattice [sites

15

long. We will write the particle’s wavefunction over the basis states |1),|2), ..., |l), where |i)
denotes the state where the particle is located at the i'® lattice site. We will represent this
on our quantum computer by an array of [qubits. When we observe a qubit, we will find
it in either the state |0) or |1), and we will take this to mean that site is either unoccupied
or occupied. If we assume that at most one particle can occupy a point in space, then
such a scheme of | qubits forms a basis for a system of [particles moving on the lattice.
Although we initially restrict our attention to the 1-particle subspace, the ability to simulate
a multi-particle system with no extra memory will yield an exponential improvement over
the classical simulation described in section 2.

We can write the single-particle wavefunction t[t] as

l

Ylt] = eili). (14)

=1

We must now find an evolution operator D such that

Yt +1] = Dylt] (15)

and D reduces to the U given by exp[iH (t—tp)] in the limit of continuous space and time. We
will also require that D is unitary and can be implemented by a series of two-qubit logic gates.
We present, an operator found by Boghosian and Taylor, which acts on the Hilbert space for
all the qubits but reduces to the Schrédinger equation on the single-particle subspace [10].

We define two operators on the single-particle subspace

16

ba00---0000 b000---000a
ab00---0000 0ba0---0000
00ba---0000 0ab0---0000
00ab---0000 000b---0000
Di=| : . Dy=1| : . (16)
0000---ba00 0000---5000
0000---ab00 0000---0ba0
0000---00ba 0000---0ab0
0000---00ab a000---000b

where |a|?>+ [b]> = 1 and ab* +a*b = 0 so that both operators are unitary (* denotes complex
conjugate). We can write an algorithm with these two unitary operators that yields the
motion of a single particle:

Y[t + 2] = Dy Dyy[t]. (17)

The crucial fact about these operators is that they can be constructed from an operator

s which acts only on 2 qubits:

1000
0ba0
0ab0

0001

The authors of [10] show that the operator D; - Dy does indeed reduce to the Schrédinger
equation, with the potential V[x] = 0. We now have a two-qubit operator that simulates the
motion of a single particle on a linear lattice. It requires [qubits (one at each lattice site),
and offers no improvement over the classical algorithm of section 1.

The real power of the quantum computer resides in its ability to simulate many identical
particles moving on the lattice without storing any more qubits. To simulate the motion of
a single particle, we only studied the single-particle subspace of the larger, [-particle Hilbert
space spanned by the [qubits. For a system of n particles, the wavefunction [z, zo, ..., x,] =
> Ciyin Vi @Yy, ® ... ®1Y; , alinear combinations of all states with n lattice sites occupied.
The only thing preventing a direct generalization to n particles of our earlier method is

that the operator s fails to include particle interactions. Suppose the potential in the n-

17

particle problem can be expressed in terms of pairwise functions of the distance between two
particles. We can implement this potential as an operation which at every time step acts
on each 2-qubit pair. This will not increase the storage space at all, and will only add a
constant number of instructions to each time step. The memory and running time will both
grow like [, instead of growing like [in the classical case (d=1 for now).

Although our approach encounters some problems when we generalize to d dimensions,
we can modify it so that the memory and time requirements grow only as [for n < [%.
The astute reader will have noticed that the endpoints of the linear lattice evolve differently
under the operators D; and D, discussed above, and in general that the 27 corners of space
will behave this way as well. Moreover, if only one particle can occupy a lattice site at a
time, we cannot model collisions in a way that is symmetric in all directions. The authors of
[10] propose using a Quantum Lattice-Gas Automaton to solve these difficulties. The basic
idea is to allow one particle at each lattice site for each direction of motion on a lattice; in 2
dimensions, for instance, there are 4 possible directions to move, and in d dimensions there
are 2d. We can do this if the lattice is sparsely populated (ie, n < [?), since the likelihood
of two particles occupying the same lattice site with the same velocity will then be small.
We will now in effect have 2dl¢ lattice sites, and therefore have a 2dl%-dimensional Hilbert
space. The time required to advance the simulation on step in time will scale like d?1¢, since
we must consider collisions between all 2d possible particles at a lattice site with particles
in neighboring sites. We see that these resource estimates are independent of n, and are
exponentially smaller than the (" needed on a digital computer. For the same numbers used
above, (I,n,d) = (10,20, 3), we will need only 6 - 10> = 6000 qubits of storage space and
~ 9000 instructions, as opposed to the 10°° needed by a classical computer.

We have a theoretical algorithm for simulating quantum systems with manageable re-
sources, but it is still unclear how exactly we can extract results from our quantum computer.
The simulated system’s wavefunction is stored in the computer’s qubits, which we must some-

how measure. Unfortunately, measuring any part of the computer will collapse it into an

18

eigenstate, and disturb the information contained in the other qubits! The only way to
proceed is to run the algorithm many times and record how frequently we find the machine
in a given state. This will lets us know, to some statistical certainty, the magnitude of the
coefficients of the wavefunction, or the probability of finding the system in the corresponding
eigenstate. This is the best we can do in a quantum-mechanical experiment anyway, since the
theory is inherently probabilistic and the phases of the amplitude coefficients do not influence
the distribution of the results of measurement (that is, they are not directly measurable).
It is also important to realize that the idea we use here to get answers from a quantum
computer matches the analysis behind the classical probabilistic computer in section 3. The
only difference between our quantum algorithm and the classical-probabilistic approach is
that the physics underlying the latter kind of computer prevented it from reproducing the

statistical predictions of quantum mechanics.

5 Conclusions and Future Prospects

The quantum algorithm described above for simulating quantum mechanics offers an expo-
nential speedup over the classical approach presented in section 2. Another exciting result is
the algorithm developed by Shor for factoring large numbers in polynomial time: all known
classical algorithms are slow, exponential-time ones [11]. These developments show that
quantum computers are not just a theoretical curiosity, but hold concrete, practical advan-
tages over classical computers. This begs the question of how much progress has been made
toward constructing a real quantum computing device. Unfortunately, only the most basic
systems capable of storing a few qubits have been realized in the laboratory. Efforts are
focused right now on using ion traps or nuclear magnetic resonance systems to construct
basic quantum computers with 10 to 40 qubits of memory.

One of the main pitfalls in constructing a working quantum computer is error. All
computers must be robust against the occasional flipping of a bit, and the theory of error-

correcting codes for digital computers is well-established. The sources of error, however,

19

are much more insidious in the quantum realm. The wavefunction of the computer cannot
be separated from that of its environment the way we can shield a classical system from
contact with its environment. This coupling to the environment leads to all sorts of prob-
lems, not the least of which is decoherence, or the disturbance of the coherent superposition
needed to perform computation. To show how exacerbating the problem of decoherence is,
merely observing the computer may destroy a computation since it collapses the computer’s
wavefunction!

From a more theoretical perspective, studying computation has helped illuminate aspects
of physical theory itself. For instance, Feynman suggested that since computers as we con-
ceive them can only work with discrete quantities, space and time may not be continuous
but discrete. These and other connections between physics and computation are profound,
but we are only starting to explore them. One of the main bridges between these fields is
the notion of information, which as we mentioned above underlies Heisenberg’s acceptance
of quantum nonlocality (it cannot be used to transmit information). Perhaps large parts of
physical theory can be translated from statements about momentum conservation or sym-
metry into statements about information. It seems clear that the simulation of nature by
computer, digital, quantum, or otherwise, still has many diverse challenges and rewards to

offer us.

20
References

[1] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,

preliminary edition, 1996.
2] R. P. Feynman. Quantum mechanical computers. Foundations of Physics, 16(6), 1986.

(3] R.P.Feynman. Simulating physics with computers. International Journal of Theoretical

Physics, 21(6/7), 1982.
[4] A. Einstein, B. Podolsky, and N. Rosen. Physical Review, 47, 1935.
(5] J. S. Bell. Physics, 1, 1964.
6] A. Aspect, P. Grangier, and G. Roger. Physical Review Letters, 28, 1972.

(7] P. Eberhard. The epr paradox: Roots and ramifications. In W. Schommers, editor,

Quantum Theory and Pictures of Reality. Springer Verlag, 19809.

[8] B. H. Bransden and C. J. Joachain. Introduction to Quantum Mechanics. Longman

Scientific & Technical, 1989.
9] A. Steane. Quantum computing, July 1997.

[10] Simulating Quantum Mechanics on a Quantum Computer, Nov. 1996. Based on talk

given at PhysComp 96 conference, Boston University.

[11] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer, Aug. 1995. AT&T preprint quantum-ph/9508027.

This paper represents my own work, written in accordance with University requlations.

