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Drift wave test particle transport in reversed shear profile
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Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves,
are derived. The maps allow the integration of particle orbits on the long time scale needed to
describe transport. Calculations using the drift wave maps show that dramatic improvement in the
particle confinement, in the presence of a given level and spectriEx & turbulence, can occur

for q(r) profiles with reversed shear. A similar reduction in the transport, i.e., one that is
independent of the turbulence, is observed in the presence of an equilibrium radial electric field with
shear. The transport reduction, caused by the combined effects of radial electric field shear and both
monotonic and reversed shear magnagtiofiles, is also investigated. @998 American Institute

of Physics[S1070-664X98)03711-2

I. INTRODUCTION transport can be explained by considering test particle mo-
tions in a fixed level of drift wave activity.

In the reversed magnetic shear experiments on the To- A consequence of the reduced particle transport across
kamak Fusion Test React¢TFTR), the particle transport the g-reversed surface is the onset of a growth of the core
behaves as though a barrier to transport exists near a miniensity and pressure gradient, which, in turn, produces a
mum of the safety factoqy,,. This transport barrier persists growing Shafranov shift of the core plasma. Both the in-
through the course of the high-power portion of the dis-creasing Shafranov shift and the increasigshear reduce
charge (=2.5-3.5s) and correlates with the location of athe drift wave growth rates. These consequences would be
dmin that occurs initially ar/a=0.35 and subsequently de- consistent with the change in the turbulence reported in Maz-
creases ta/a=0.3 att=3 s, at which timegq(0)=3.5 and  zucatoet al
Omin=2. It is reported that an interpretation of the particle  An important technique that allows the long-time inte-
transport with a diffusivityD without a pinch term shows a gration of particle orbits is to replace the actual guiding-
decrease D, by a factor of about 40 in the reversed shearcenter orbits with those of a symplectic map, a map that has
region[q’(r)<0]. Changes in the temperature profiles arethe same Hamiltonian structure as the guiding-center equa-
less dramatic than those in the density profiles, althoughions. Individual orbits obtained from the map can differ
power balance studies with the transport coHeNsF show  qualitatively from those obtained from the differential equa-
a large drop in the ion thermal diffusivity. Also, the electron tions, but statistically maps tend to give correct quantitative
temperature profiles change little agd decreases, at most, predictions. In related studies by Pagkal,’ the exact ion
by a factor of 2. Explaining these changes provides a puzzlerbits in full toroidal geometry are followed, and these re-
that we address in this paper. sults complement the present study by maps. As a practical

The above results are consistent with a model of thematter, however, only with maps can one follow orbits accu-
electron thermal transport caused by ambient drift wave turrately for the 16 time steps required to go from the wave
bulence, where modest changes in the turbulence levels aterrelation time scaler,.~1/Aw~10"° s to the transport
consistent with small changes in the growth rates found in aime scale ofr,~a%D~1-10s.
detailed eigenmode study of Reversed Sh&$) and En- We derive maps that describe particle orbits in drift
hanced Reversed She&RS plasma: Donget al? also find ~ waves. These maps reveal that the improved confinement for
only modest changes in the lon Temperature Gradidi@) the reversed shear profile arises from a change in the topol-
and trapped electron mode growth rates induced by reversegy of islands and the concomitant persistence of invariant
shear. Thus, we are led to a picture in which there is a draeurves in a layer in the vicinity of the point where the shear
matic improvement in the particle confinement with reversedeverses, the shearless point. Away from the shearless point,
shear profiles, without necessarily a significant change in theve show in Sec. Il how the transport degrades to that given
turbulence level. Here we show how such a reduction irby the standard map. Near the shearless point, however, the
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map characterizing the motion is a nontwist mape Refs. do By Cdo CE
6—8 that possesses two parameters. For the same fluctuation r GV + Bar B
spectrum we show that the transport is substantially reduced
for the reversed shear profile. de

Specifically, in Sec. Il we derive local drift wave maps R——=v,, (5)
that describe the plasma transport in the vicinity of a given dt

radial position with a givery value (or rotational transform wherex=(r, 9, ) andE, is the equilibrium radial electric

~1/q). Away from the shearless point, the local drift wave . . _ L i
map possesses the form of the standard map, but at the sheg(re—ld' For electrostatic modes, =0 and magnetic field er

less point it has the form of thetandard nontwist maghat rorsFarE)emnEgIsec(:i()a(;.n\(/jv(z)also assu By>B, as usual.
was introduced in Refs. 6—8. In Sec. IIl, we derive the global as- '

4

drift wave map, which retains the entire radial information of 4, cl g

the q profile. The global drift wave map is used in Secs. IV i BT o9 2 dmLcogmi—lp)cog nwpt)

and V, where we investigate the dependence of transport m,1,n

upon magnetic shear and the inclusion of the radial electric +sin(md—1g)sin(nwgt)]. (6)

field with shear. A detailed depiction of the structure of the
maps in the vicinity of the shearless point is given in Sec. VI.Since
We summarize and conclude in Sec. VII.

+ oo
2 cos{nwot)=27r2 S(wot—2nN)
n=—cw
Il. DRIFT WAVE MAPS oo
The physical motivation and justification for introducing and > sin(nwet)=0, (7)
n=—ox

a map in place of the differential equations follows from the
electromagnetic(laser and microwave scattering experi- by symmetry,

ments that show a wide frequency spectrum for a fixed scat-

tering vectork.®1° Numerous experiments indicate that for  dr 2#c

each drift wave vector wave number there is a broad spec- g7~ B n;n M, SiI(MI—1¢) d(wot—2mn), (8)
trumnwy, N=1,2,...N of frequencies. Here, is the lowest v

angular frequency with substantial amplitude in the driftsg, this model spectrum, giving impulsive jumpsrimt times

wave spectrum. We idealize this spectrum by taking the Iimittn: 27N/ wo. The jumps imply that every correlation timg
N—oo and, furthermore, assuming phase coherence of thge particle takes a ne@xB step.

components. We show presently that the result of these as- Now, for convenience, define the actidr=(r/a)?,
sumptions for normal magnetic shear profiles is to producgyherea is the minor radius of the torus. Assuming one mode
the standard map with the well-knoviexB diffusivity De L dominates in Eq(8), we have
=vE7r/coo for both the ions and electrons. Hereg
=cExB/B? is the drift velocity induced by turbulent fluc- dl 2rdr 4mc )
tuation. This albeit oversimplification of the drift wave spec- i~ a2 di ~ a2g W #wm.L SN(Md—Le)
trum captures the essential features of BB turbulent
transport in monotonig|(r) profiles.

V\I/De consider an eTlte(ct)riE field that possess a radial mean XE Olwot=27m). ©
part plus a fluctuating part. For the fluctuating part we use

the model drift wave spectrum, Integrating Eq(9) over one jump and dropping the subscript
on the electrostatic potentig gives
P )= X ¢ cOXMI—lo—nawot), (D) 4me Mo
m,l,n )
~ _ ~ |N+1=|N+§2§w—SIn(MﬁN—LgDN). (10)
where ¢ is the electrostatic potential such that —V ¢. In 0
this section we assumg,,, to be constant for local maps, Defining the relative phasg/=M d(t)—Le(t), from
though we will consider it as a function ¢fandr for the  Eqs.(4) and(5) we have
global map in Sec. lll. In Gaussian units, the guiding-center o
equations of motion are dy By cE, v,
— = . UH__ _L_ (11)
dx B CcExB dt rB By R
at VBT BT @ ons | .
For ions in an H mode or an ERS-confinement mode, we
giving need to keefk, . For electrons or ions in the L-mode drop
~ CE,/By<<v,. We ignore the term in this section and return
ﬂz _clie 3) to theE, effect in Sec. V. Integrating Eq11) between the
dt Br %’ jumps in Eq.(9),
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_ 27TU|| Bﬁ rB
Iner= It —— 5 | M~ RB,
= 27T M-—L 12

We wish to write a map fol, ¢ that has the form of the

Standard Nontwist MagSNM) of Refs. 6—8:
Xnsr=Xn+a(1=Y& 1), Yyna1=Yy—B sin2aXy).
13

Suppose we have a toroidal magnetic field witfr)

=rB,/RBy with a local minimumg,=q(rny), q'(rm) =0.
Sincedg/dI=(dg/dr)(dr/dl)=0 atr,,, q has a local mini-
m=1(r). Considering the motion of a particle near

mum atl
r» and Taylor expanding aboutl ., yields

n

q

a)=an+ 5 (1=1m)?, (14
where q;,=
(12) yields

L " 2

dy U M_Lqm_zqm(l_lm)
—= . 15
o n (15)

R qm+?(|_|m)2

To putdy/dt into the form of the SNM, we Taylor expand

Eq. (15) aboutl =1, to find
dy vy qm
E_R_qm( —Lam— (I_Im) ) (16)

We integrate Eq(16) over the time step to get

2w L2 ( M q:.,n
1= Int | 85
N+1 N 2qm

oo RO, (|N+1_Im)2)u (17)

whereé=M —Lq,,. Forl on the right-hand side, we choose

In+ 1 to make the map area preserving.
Introducing the variables

M /rln 1/2
%, Y:(qué) (I=Tp=k(l=1,), (18

we can write the map in the form of the SNM:

X=

_ v9 2 \_ 2
XN+1_XN+ Rq P (1_YN+1)_XN+CV(1_YN+1)1
Im
19
—2mcMe)\ [ 2Mal,\ Y2
Yn+1= YN~ a’Bw, ) sin(2mXy)
m

All of the variablesX, Y, a, andg are dimensionless. We can

q”(l). Substitutingq from Eg. (14) into Eq.

Horton et al.

12

29,0
oY +r2, (22)

y=27X, rZZaZ(M—q,,

m

Now consider the diffusion from a poing nearr,,. We
define the diffusion coefficierd, by

_ 2
D,= lim W (23)

N—oo

Assuming thate=|(ry—rq)/ro|<1, we obtain
((rk=rd)?)=4rg(rn=ro)?). (24

and thusD, is given by

((ri=r5)?

D,= lim
" New BTG
Yu 2\,
i ((In—lo)?a® <T+'”‘_'° >a
= lim —————=lim .
New  BINTG N—sc 8tnr'g
(25
Integrating through Eq(20),
N—1
YN=Yo—B 2 sin2mX)), (26)
=0
taking the average
N—1
(YRy=(Yo)~ 2Yoﬁ<20 sin(zwxi>>
N—1 2
+B2< > sin(zwxo) > 27)
=0

and assuming that the phase is uncorrelated between succes-
sive iterations, gives

N-1 2
<Y§>=Y§+32< > sinz(ZWXi)> =YZ+ —B . (29
=]
Noting thatY,=Kk(lo— 1), it is seen that all constant terms
in Eq. (25 vanish. SettingN= wyt/27, we can solve Eq.

(23 for D, :

Ng%a®>  m (CM¢)2
16tk?r2  2wg | Bro

r= (29
The conditions one and 8 for Eq. (29) to apply must be
determined numerically.

Now consider the motion of a particle near a point
=r, away fromr,. Assumingq, =q’(r,)#0, to first or-
der inr—r, , we have

Q(f):q*+QL(r_r*)- (30

transform these dimensionless variables back to the physicafom Eq.(8), we know that if one mode, saly,M, domi-

ones by
_ U||5
Rgnwo'

_ n\ 1/2
27TCM¢>(2MC]) | 21

a’Bwg amd

nates, then

dr 2mcM¢
dt Br

siny >,

n=—ow

Swot—2mn). (31
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In Eq. (35) we chooser aso=(w, /wg)(e:/bs) for the
fluctuation in the positive shear region andas (w, / wg)
X(e./bs) for that in the negative shear region in order to
represent outgoing waves propagating away from their ratio-
nal surfaces. Thugr; <0 gives a convergent sum in E®5)

If we integrate over one jump, as we did to obtain ELp),
we obtain the Standard Twist MagTM):

27cM¢
fN+1=fN+mSln NP (32

27, q. in both cases. Here, the diamagnetic frequeney
¢N+1=¢N+ Ro (5 M = (rN+1—r*)). (33) =(kcTy)/(eBL,), L, is the density scale lengthe,
“o O =L,/(qRy7), Ry is the major radius of magnetic axis,
Calculating the diffusion coefficient about a poigtnearr =T./T;, b=k?p?, andp; is the ion gyroradius.
gives Assuming the same spatial variation of the mode ampli-
(ry—T0)?) 7 [cMg)\? tude in Eq.(35) for the whole frequency spectrumw,, we
D,=lm ——%'1— — ( ) , (34)  can get from Eqs(3)—(5), the global map:
t—so0 2t 2(,00 Bro -
. . iy Amc d¢
which is the sam®, as in Eq.(29). The conditions for the Iner=Int —— (36)
onset of diffusion are different, but once diffusion sets in the woa’B
diffu_sivity is the same, reg_ard.less of whether or not the 20 v 2cR (9¢
profile a has vanishing derivative. Ine1=Ont Rwg Q(|N+1) 2B 9l (Ine) |, (37
Il. THE GLOBAL MAP 27y
eN+1=@NT Rog (38

The standard twist and nontwist maps derived above are
local maps that apply in the neighborhoods of points with theTracking the particle dynamics with the map rather than with
characteristic features of the rotational transform selected fahe differential equations, allows us to effect long timet (
the expansion. When maps are advanced far into the future, 1 s) integration. Integration on this time scale would be
however, the particle may leave these local neighborhoodgrohibitive with the differential equations given in Park
Thus, it is of considerable practical importance to write glo-et al®
bal maps, even if qualitative in terms of the particle trajec-
tories in the true tokamak system, that describe the part|cle
orbits for allr/a<1. IV. MAGNETIC SHEAR DEPENDENCE OF

The problem we wish to address is the patrticle transpor?RANSPORT
barrier in the RS and ERS experiments. In the reversed mag- We now investigate numerically the transport properties
netic shear experiment the particles act as though there weeg ions by integrating the drift wave map, E¢86)—(38), for
a barrier at the edge of the reversal regidnithin the con-  the model fluctuations of Eq35), together with the Monte
text of a model, we will show that it is the nonmonotonicity Carlo Coulomb collisional pitch angle scattering.
of the 1g(r) profile, resulting from the hollow current pro- Assuming that small angle Coulomb scattering changes
files, that causes, generically, a particle transport barrier. Wehe direction, but not the magnitude, of the velocity, the col-
show this phenomenon here without changing the fluctuatiofisional scattering operator for the change of the velocity
level for the onset condition for a transport barrier. The basiG/ariables was derived in Ref. 5:
reason for the change in the nature of the transport is the >
change in the particle—wave phase relation atq.mﬂ sur- (p1)s=(py); COS y+ 7 [<Hi sin y cosa,
face. The same type of effect occurs when certain conditions B
are met with shear in th&, profile. Whether or not the 24 2u
magnetic or electric field shear profiles dominate, dependson —— ((m) + )sm2 y sirf a
the species and pitch angle of the particles. By

For the global map, in order to determine the spatial m 2
variation of the mode amplitud¢,, |, we adapt the model of + \/? cosy—(py)i Sin y cos a) . (40
Connor and Tayldt for drift waves in toroidal geometry. In :
their model, electrostatic drift wave fluctuations of frequencyHere, py=v,/Q;, ; is the ion gyrofrequency at the mag-
wg are given by netic axis, angu=muv?/2B is the magnetic moment. In Egs.

(39)—(40), subscriptsi and f refer to the initial and final

(39

B(r,9,0)=do>, exgoy(x—m)?/2]-cog — or(x—m)?/2

—(m+M)9+Lo—wpt], (35

where:ﬁo is the mode amplitudegz and o, are real and
imaginary parts ofr, x=kps, k=Lqg/r, p=r—r, is the ra-
dial distance from the rational surface given by

=Lq(rg), and s(r)=(r/q)(dg/dr) is the magnetic shear

function.

values, respectively. Two angles and y are determined
from two random numberg; and %, on[0,1] as

y=[—vét In(1—7)]1",

wherew is collision rate and/6t<<1 is required.

We have performed simulations for the TFTR and Texas
Experimental TokamaKTEXT)'? system parameters. For
the Levinton etall discharge in TFTR, we useR
=260 cm,a=90 cm, andB=4.6 T. For TEXT we use ma-

a=27n,, (41)
m
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FIG. 1. Radial profiles of safety factoy(r) and sheas(r)=r/qdg/dr for FIG. 2. Time dependences of the running diffusion coefficients and the
normal[(a) and(b)] and reversedl(c) and(d)] shear cases. location of particles on the poloidal section at the last moment of simulation
for normal[(a) and(b)] and reversedl(c) and (d)] shear cases.

jor radiusRy=100 cm, minor radiug=26 cm, and center-
line field B=3 T. The results are qualitatively similar for the
sameq profiles. While TEXT did not operate in the RS re- A decorrelation of the drift wave fluctuations with the
gime, our earlier studyof transport used TEXT parameters. plasma, which is similar to that induced by the reversed mag-
Two q profiles, the normatj(r) =1.99+ 1.94(/a)? and the  netic shear, also occurs if the shear in Eyeprofile is large
reversedy(r)=1.99+ 7.76(/a— 0.5, are usedsee Fig. 1 enough. Fofv,|<c|E, /B,|, the rotation in is dominated
We choosew,=1.93x10°, L=6, M=15,L,/R;=0.2, and  py the E, profile, rather than by the magnetic shear. Evi-

6=0.5, which do not contradict the assumptions for 89).  dently, in Eq.(37) we should replace thé with
In Fig. 2 we show the time dependences of the running

V. ELECTRIC SHEAR DEPENDENCE OF TRANSPORT

diffusion coefficients 2w V| 2cR
’ Ins1=Ont +
11 N N N wOR Q(IN+1) Baz
Z0= 5§ 2, HO-rOF, (42 5 _
- X ﬁ—luNH)—E.(INH))] (44

for an ensemble oD * ions composed of 1024 passing par-
ticles that initially haver =2—7.2 cm for core ions and ran- In Fig. 3 we present the running diffusion coefficients in
dom s with the kinetic energyZ=1keV andA=u/Z  the presence d&, by solving Eqs(36), (38), and(44) for the
=1x10"° with’?ﬁozo,s eV andv=1s1 The integration ensemble and system parameters used in the calculations of
time step is 0.X 27/ wy=3.26 us and total integration time Fig. 2. The normaly profile of Fig. Xa) is used. The inte-
Tis 1P time steps. gration time step is 0227/ wy=6.51us and the total inte-

The running diffusion coefficients converge to well- gration timeT is 1C° time steps. We use two equilibrium
defined constant values, indicating that the radial transport ipotentials for this calculation, in order to show the effect of
a diffusion process. We can obtain the diffusion coefficientshear on thé& xB poloidal velocity generated b, . In the

from the time series of/(t) as first case,®qy(r)=—Pq(1—(r/a)?), which inducesv , /r
. T =cE, /(rBy) ~1+¢; i.e., the profile induces small shear in
g= Z(t)dt, (43)  the ExB poloidal velocity. In contrast, the second equilib-
T=To Jg rium potential® y,= — ®o(1— (r/a)2)exp(1-r/a), results in

whereT, is the time at which convergence is observed to seft strongly sheared,/r profile.
in. For ®4;, which has little shear, the diffusion coefficient
The diffusion coefficient is smaller for the reversed sheais not much different from that of the 6, case of Fig. a).
case, and it can be seen that the radial position of the minin contrast, the results foh,, shows thatE, generates
mum shear acts as a barrier to radial transport in that casenough shear in thExB poloidal velocity to suppress the
This shows that the change in the particle—wave phase reldransport induced by the drift wave electrostatic fluctuations,
tion at the minimumg surface induces the change in the as first proposed by Biglaret al!® and numerically con-
nature of the transport. firmed for the global toroidal system in Ref. 5 by solving the
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FIG. 3. Radial profiles of equilibrium potential and running diffusion coef-
ficients fordy, [(a) and(b)] andd g, [(c) and(d)] in normalq equilibrium.
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(38), and(44). The ensemble and system parameters used in
these calculations are the same as those of Fig. 2. The inte-
gration time step is 0227/ wy=6.51 s and the total inte-
gration timeT is 1¢° time steps. In the first case4(r)
=do[1—-(1-2r/a)?], which inducesv,/r=CcE,/(rBy)

>0 for r<a/2, and vice versa. In this case witib
=1keV, the electric field induces poloidal velocity in the
opposite direction to that induced by the magnetic shear, and
the diffusion coefficient is larger than that of Figcpfor the
case without a radial electric field. In contragtg,= ® (1
—2r/a)? inducesv,/r =cE, /(rB;) <0 for r <a/2, and vice
versa. In this case the diffusion coefficient is smaller than
that of Fig. Zc).

VI. MAP STRUCTURES IN A REVERSED SHEAR
PLASMA

To isolate the effects of reversed shear and radial electric
field profiles from those of the radial variation of mode am-
plitude, random noise of collisions, and others, we consider
the simple global map, including a single modeMfL, with
no radial variation of the mode amplitude. We solve the fol-
lowing mapping equation, which is similar to Eq40) and
(12), but includes the effect of an equilibrium radial electric

coupled ordinary differential equations for the exact guiding-field:

center trajectories. When we use thgprofiles in Fig. 3 in

=3

the reversedq equilibrium, we get diffusion coefficients, me M_ : _
each of which is smaller than their counterparts in Fig. 3. B, @ SiNMy—Lew), 49
For |v|~c|E, /By| the rotation ind is induced by both
the g and E, profiles, and the relative direction of rotation X1 = Xnt Rallned) ¥ RalInea), (46)
generated by the magnetic and electric shear is important.
The rotation components might add up, or compensate each Ri(1)= woqR [M—Lq(l)], (47)
other, as can be easily seen in E44). In Fig. 4 we present 0
the running diffusion coefficients in the presenceEpfwith Ru(] 48
the reversed profile given in Fig. 1c) by solving Eqs(36), 2(1) woaBy || (48)
2
: @ W ) vy()= \/5 [£i—eDo(1)]1(1—ABy). (49
R Here the equilibrium radial electric field E,(I)
~ = =—0®Dy/dr|,_qr, the initial total energy i$’;, andeis the
% £ charge of the particle considered. We investigate the map
= \_/ z phase space structure by calculating particle trajectories with
various initial conditions in configuration space, for the re-
versed shear case above. In Figs. 5 and 6 we present the map
2 « % r  phase space for cases with=167 and 370 eV, which were
' ! chosen to make the denominator of the major rational rota-
2 ) 20 0 tion number near the minimurg surface be odd and even
integers for each case. In the case of Fig. 5 the surface with
the rotation number 1 is located near the minimgisurface,
~ = and in the case of Fig. 6 the surface with the rotation number
< g 2 exists. All the other parameters are same as those used in
& /—\ g the calculations of Figs.(2)—2(d). In these calculations we
do not consider the equilibrium electric field. Figures 5 and 6
show the role of the minimung surface, i.e., the shearless
-2 y v curve, in producing a transport barrier, and the typical sepa-

FIG. 4. Radial profiles of equilibrium potential and running diffusion coef-
ficients for® 3 [(a) and(b)] and®, [(c) and(d)] in reversedy equilibrium.

t

ratrix reconnection of odd-period and even-period orbits of
the SNM(see Ref. ¥. We show the rotation number profiles
for both cases in Fig. 7.

Downloaded 20 Sep 2004 to 161.67.37.13. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



3916 Phys. Plasmas, Vol. 5, No. 11, November 1998 Horton et al.

R T S L B A 3 T T T T
B CVel —
= g = ) odd ---
< i T
=
g
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U4y T 00 ' R 0.0 0.5 g 0
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(1) o= 0301 (h) o =3 2
0.6— v - 06— ~
o
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T~ T
= =
- | | ] }
0.0 0.2 0.4 0.6 0.8 1.0
sy rfa
- e i
VA 0.0 os A3 0.0 0.5 . ) o
X Y FIG. 7. Rotation number profiles for the cases in Figs. 5 and 6.

() o= 501 (d) o = 8ol

FIG. 5. The surface of section for the structures in the map in EfB—
(49). The drift wave potential amplitudes af@ ¢=0.3 eV, (b) $=3 eV,

(c) p=5eV, and(d) $=8 eV in the case that a period-odd orbit exists near . . . .
the shearless curve of a minimugrsurface. The magnitude of above radial electrostatic potentt )

is a few keV, which is enough to appreciably modify the
rotation number profile. The resultant total rotation number
To see the modification of the rotation number profileprofile has three extremum surfaces, as shown in Hig). 8
due to the radial electric field, we consider the model electriAll of these surfaces act as confinement barriers, as can be
field, seen in Fig. &). We used¢$=6 eV and#;=1 keV for this
calculation. Observe that the transport is suppressed where

— 0.6rE : ' . .
E —— 0 (50) the total rotation number profilR; + R, is shearless, which
r . . . . .
r2 2 is a universal property in area preserving nontwist nfaps.
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FIG. 6. Map structures fofa) ¢=5¢eV, (b) $=8¢eV, (c) p=12eV, and FIG. 8. Rotation number profiles and the surface of section for the map

(d) =18¢eV in the case that a period-even orbit exists near the shearlessructures withouta) and(c) and with (b) and(d) a radial electric field in
curve of a minimumg surface. Eq. (50).
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