
Convective Raman amplification of light pulses causing kinetic inflation in
inertial fusion plasmas
I. N. Ellis, D. J. Strozzi, B. J. Winjum, F. S. Tsung, T. Grismayer et al. 
 
Citation: Phys. Plasmas 19, 112704 (2012); doi: 10.1063/1.4762853 
View online: http://dx.doi.org/10.1063/1.4762853 
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v19/i11 
Published by the American Institute of Physics. 
 
Related Articles
Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction 
Phys. Plasmas 19, 093120 (2012) 
Simultaneous stimulated Raman, Brillouin, and electron-acoustic scattering reveals a potential saturation
mechanism in Raman plasma amplifiers 
Phys. Plasmas 19, 083109 (2012) 
Geometrical constraints on plasma couplers for Raman compression 
Phys. Plasmas 19, 083110 (2012) 
Nonlocal, kinetic stimulated Raman scattering in nonuniform plasmas: Averaged variational approach 
Phys. Plasmas 19, 072319 (2012) 
Estimating the pressure of laser-induced plasma shockwave by stimulated Raman shift of lattice translational
modes 
Appl. Phys. Lett. 101, 021908 (2012) 
 
Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/ 
Journal Information: http://pop.aip.org/about/about_the_journal 
Top downloads: http://pop.aip.org/features/most_downloaded 
Information for Authors: http://pop.aip.org/authors 

Downloaded 28 Nov 2012 to 128.115.27.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://pop.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=I. N. Ellis&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=D. J. Strozzi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=B. J. Winjum&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=F. S. Tsung&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=T. Grismayer&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4762853?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v19/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4754698?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4748290?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4745868?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4737609?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4736410?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov


Convective Raman amplification of light pulses causing kinetic inflation
in inertial fusion plasmas

I. N. Ellis,1,2,a) D. J. Strozzi,1 B. J. Winjum,2 F. S. Tsung,2 T. Grismayer,2,3 W. B. Mori,2

J. E. Fahlen,2 and E. A. Williams1

1Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2University of California, Los Angeles, California 90095, USA
3Grupo de Lasers e Plasmas, Instituto Superior T�ecnico, 1049-001 Lisboa, Portugal

(Received 6 August 2012; accepted 4 October 2012; published online 26 November 2012)

We perform 1D particle-in-cell (PIC) simulations using OSIRIS, which model a short-duration

(�500x�1
0 FWHM) scattered light seed pulse in the presence of a constant counter-propagating

pump laser with an intensity far below the absolute instability threshold. The seed undergoes linear

convective Raman amplification and dominates over fluctuations due to particle discreteness. Our

simulation results are in good agreement with results from a coupled-mode solver when we take into

account special relativity and the use of finite size PIC simulation particles. We present linear gain

spectra including both effects. Extending the PIC simulations past when the seed exits the simulation

domain reveals bursts of large-amplitude scattering in many cases, which does not occur in

simulations without the seed pulse. These bursts can have amplitudes several times greater than the

amplified seed pulse, and we demonstrate that this large-amplitude scattering is the result of kinetic

inflation by examining trapped particle orbits. This large-amplitude scattering is caused by the seed

modifying the distribution function earlier in the simulation. We perform some simulations with

longer duration seeds, which lead to parts of the seeds undergoing kinetic inflation and reaching

amplitudes several times more than the steady-state linear theory results. Simulations with

continuous seeds demonstrate that the onset of inflation depends on seed wavelength and incident

intensity, and we observe oscillations in the reflectivity at a frequency equal to the difference

between the seed frequency and the frequency at which the inflationary stimulated Raman scattering

grows. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762853]

I. INTRODUCTION

Backward stimulated Raman scattering1,2 (BSRS) in

plasmas, in which an incident light wave in a plasma decays

into a backward-propagating light wave and a forward-

propagating plasma wave, has been a subject of much study,

in large part because it scatters light away from the target in

inertial confinement fusion (ICF).3,4 Early research focused

on relatively high intensities, where growth was in the

weakly damped convective and absolutely unstable regimes,

and saturation occurred due to wave-breaking and/or pump

depletion.5,6 The competition between back-, forward-, and

side-scatter was also investigated.7,8 As laser and plasma

parameters for ICF evolved, research in BSRS shifted to the

strongly damped regime. In modern experiments, SRS typi-

cally occurs at densities and temperatures for which

kkDe � 0:3, where Landau damping is significant. In this ki-

netic regime, the measured BSRS reflectivities can greatly

exceed the values from linear theory calculations, e.g., in the

single-hot-spot experiments of Ref. 9. 3D paraxial-envelope

simulations with linear damping, however, correctly mod-

eled the intensity threshold for SRS in experiments with

a smoothed, multi-speckle beam in a pre-formed uniform

hohlraum plasma.10 A process called kinetic inflation was

proposed to explain the single-hot-spot results.11–13 In

kinetic inflation, a small-amplitude plasma wave excited in

the strongly damped convectively unstable regime can trap

electrons, modifying the distribution function so that the

kinetic damping of the plasma wave is greatly reduced or

vanishes.14,15 Therefore, for the same incident laser intensity,

SRS can then transit to the weakly damped or absolutely

unstable regime.16 There has also been recent work on how

BSRS in the kinetic regime can saturate due to nonlinear fre-

quency shifts11,17 or related trapped-particle instabilities18

caused by electron trapping. Recent research has demon-

strated the importance of the propagation and evolution of

plasma wave packets, including how the reflected light can

occur in bursts spaced proportionally to the inverse of the

nonlinear frequency shift.17 The latest research has also dem-

onstrated that hot electrons and back- and side-scattered SRS

produced by one speckle interact with neighboring speckles,

causing the speckles to self-organize and produce coherent

bursts of SRS.19 Until recently, little work has explored the

possibility of scattered light, plasma waves, or the resulting

changes to the electron distribution in one region of space or

time enhancing SRS at different times or locations.

In this paper, we make a detailed comparison of the linear

amplification of a well defined counter-propagating seed pulse

using coupled-mode theory and OSIRIS PIC20 simulations.

We then explore how this seed pulse can trigger large reflec-

tivities after it has left the plasma using OSIRIS simulations.

We consider situations in which no BSRS occurs with only

the pump (no seed is used). The seed intensity and pulse

length are varied. For short seed pulses (�500x�1
0 FWHM),a)Electronic mail: ellis@physics.ucla.edu.

1070-664X/2012/19(11)/112704/15/$30.00 VC 2012 American Institute of Physics19, 112704-1

PHYSICS OF PLASMAS 19, 112704 (2012)

Downloaded 28 Nov 2012 to 128.115.27.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4762853
http://dx.doi.org/10.1063/1.4762853
http://dx.doi.org/10.1063/1.4762853
mailto:ellis@physics.ucla.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4762853&domain=pdf&date_stamp=2012-11-26


the seed pulse is linearly amplified as it transits the box. This

amplification agrees with linear theory when appropriately

modified to take into account special relativity and the use of

finite-size particles in PIC codes,21,22 such as OSIRIS. We

simulate ICF-relevant laser and plasma conditions and dem-

onstrate that special relativity increases the linear gain and

shifts down the scattered light wavelength. We find, for these

short seed pulses, that kinetic inflation occurs after the seed

pulse leaves the box. The timing and amplitude of the first

peak in reflectivity after the seed pulse depend on the dura-

tion and intensity of the seed pulse. We examine the trapped

particles to verify that kinetic inflation is occurring and that

the bounce period is consistent with the Langmuir wave

(which we also call the plasma wave) amplitude.

For longer seed pulses, the inflationary burst of scattered

light overlaps with the seed. Under these conditions, the meas-

ured gain of the seed can reach several times the steady-state lin-

ear gain value when the seed wavelength is near the peak of the

gain spectrum. We also examine the onset of inflationary scat-

tering and the bursty nature of BSRS using continuous seeds.

Non-resonant seeds, which are not at the peak of the linear gain

curve, require higher incident intensity to cause inflation. We

also observe that, when the seed frequency is non-resonant, the

reflected light is modulated with a period inversely proportional

to the difference between the seed and resonant frequencies. (In

this paper, we use the term “resonance,” where 1þ vr ¼ 0 for

electrostatic waves, and “peak gain” interchangeably.) After

inflation sets in, the measured gain of the seed decreases with

incident seed intensity due to pump depletion.

The paper is outlined as follows. We present the simula-

tion geometry and plasma conditions in Sec. II and discuss

the linear theory of convective BSRS gain and its relativistic

and PIC modifications in Sec. III. We describe in Sec. IV a

subtraction technique that we use in our data analysis. In

Sec. V, we discuss the amplification of short-duration seed

pulses in PIC simulations and as calculated by a coupled-

mode solver. Section VI covers our observation of kinetic

inflation that occurs after the seed pulse passes, and Sec. VII

covers our measurements of kinetic inflation using longer

duration seeds. Finally, we discuss the onset of inflation with

continuous seeds in Sec. VIII and conclude in Sec. IX.

II. GEOMETRY AND PLASMA CONDITIONS

Throughout this paper, we use normalized units to

describe the OSIRIS simulations. To make connection to pa-

rameters of interest for ICF, we assume that the incident

pump has a wavelength of k0 ¼ 351 nm. When we note quan-

tities in physical units, they correspond to this pump wave-

length. Our formulas and other quantities are given in CGS

units while the temperature is often given in units of eV.

Figure 1 depicts the usual simulation geometry. The

pump laser (x0; ~k0) is incident from the left with a normal-

ized electric field amplitude E0e=mecx0 ¼ 3:68� 10�3 (in

physical units, I0 ¼ 1:5� 1014 W=cm2). The seed (x1; ~k1)

enters the simulation box from the right and beats with the

pump, inducing an electrostatic wave (x2; ~k2) in the plasma,

which travels to the right. Light from the pump scatters off

the plasma wave and amplifies the seed. For the simulation

parameters, this process is a convective instability.

Our simulation plasma has fixed ions and we do not add

collisions. We simulate densities and temperatures for which

SRS is expected to occur for ignition experiments at the

National Ignition Facility (NIF).23 The plasma has a uniform

density n ¼ 0:12nc ð� 1:1� 1021 cm�3Þ, where nc is the

critical density for the pump laser. The electron thermal

speed is vth ¼ 0:0699c ðTe ¼ 2:5 keVÞ. The box has length

L ¼ 1790c=x0 ð100 lmÞ and 8192 cells, giving a cell width

of 1:1kD, where kD is the Debye length. We use 16 384 par-

ticles per cell and quadratic splines for the particle shape to

reduce spurious noise due to aliasing. The particle boundary

conditions are thermalizing and we use perfectly matched

layers24 for the field boundary conditions. The particle

pusher is relativistically correct in all the simulations except

where we state otherwise.

The seed intensities we use in our simulations are far

above the background electromagnetic noise in ICF, which for

BSRS is primarily Thomson scattering.25 For the plasma con-

ditions used in our simulations and a typical NIF quad (four

laser beams arranged in a square) with effective F-number23 of

8 as the pump, the effective Thomson scattering seed within

the FWHM of the peak relativistic gain (discussed below) is

1:6� 104 W=cm2 ¼ 1:1� 10�10I0. SRS growth from such

noise is initially linear and enhanced over plane-wave growth

by intense speckles in a phase-plate-smoothed beam. In down-

stream regions, this light acts as an SRS seed far above thermal

noise and may reach amplitudes where kinetic effects are sig-

nificant. We choose seed intensities to induce such effects.

III. LINEAR THEORY OF CONVECTIVE BSRS GAIN

A. Non-relativistic theory

Our PIC simulations never reach a steady state. How-

ever, linear theory states that the reflectivity will quickly

reach a steady state when we use a continuous scattered light

wave seed. In the convective steady state, the seed intensity

is amplified by a factor of eG by the time it exits the box. G
is the linear intensity gain exponent, commonly called “the

gain,” and we present an equation for it in the strong damp-

ing limit. Here, we summarize the results from a detailed

derivation for the steady-state gain from Ref. 25.

Given the pump (x0; ~k0) and the seed (x1; ~k1), we calcu-

late the plasma wave (x2; ~k2) using the matching conditions,

x0 ¼ x1 þ x2 (1a)

and

~k0 ¼ ~k1 þ ~k2: (1b)

FIG. 1. The geometry of the OSIRIS simulations.
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We need x2 and ~k2 for the plasma susceptibility when we

calculate the gain.

Let the seed intensity be denoted by I1ðzÞ, where z¼ (0, L)

is the (left, right) edge of the box. Then,

I1ðzÞ ¼ eGlðzÞI1ðLÞ; (2)

where GlðzÞ is the linear intensity gain exponent,

GlðzÞ �
ðL

z

C1ðz0ÞI0ðz0Þdz0: (3)

We neglect pump depletion and light wave damping, so I0 is

constant, which leads to

C1 � CsIm
ve

e
ð1þ vIÞ

h i
; (4)

where the subscripts e and I denote the electron and ion spe-

cies, respectively, vj is the collisionless susceptibility for

species j, eðk2;x2Þ ¼ 1þ
P

jvjðk2;x2Þ is the plasma dielec-

tric function, and

Cs �
2pre

mec2

1

x0

k2
2

k0jk1j
; (5)

where re � e2=mec2 is the classical electron radius. For a

Maxwellian velocity distribution, vj is given by

vjðk2;x2Þ ¼ �
x2

pj

2k2
2v

2
Tj

Z0
x2ffiffiffi

2
p

k2vTj

 !
; (6)

where xpj is the plasma frequency of species j, vTj ¼ffiffiffiffiffiffiffiffiffiffiffi
Tj=mj

p
is the thermal speed of species j, and Z0ðsÞ ¼ dZ=ds.

Z0ðsÞ must be calculated numerically and is typically found

by first computing Z(s), the plasma dispersion function.26

Z0ðsÞ ¼ �2sZðsÞ � 2, with

ZðsÞ ¼ i
ffiffiffi
p
p

e�s2 ½1þ erfðisÞ�: (7)

vj ! �ðxpj=x2Þ2 as mj !1, so we can set 1þ vI ! 1

everywhere (recall we use fixed ions in the OSIRIS simula-

tions). In particular, e ¼ 1þ ve and

C1 ¼ CsIm
ve

e

h i
: (8)

We further simplify Eq. (3) since we are dealing with a

uniform plasma. C1 is constant, so the gain is given by

GlðzÞ ¼ C1I0ðL� zÞ: (9)

We also define an amplitude gain rate, g0, as

g0 ¼
C1I0

2
/ vi

ð1þ vrÞ2 þ v2
i

; (10)

where vr and vi are the real and imaginary parts of v, respec-

tively. We plot the theoretical gain spectrum for the condi-

tions of interest in Figure 2 as dashed-dotted lines.

Equations (2)–(5) are valid in the strong damping limit.

This limit applies when jvg2@a2=@xj � j�2a2j, where vg2 is

the plasma wave group velocity, a2 is the plasma wave

action amplitude (defined in Sec. V B), and �2 is the Landau

damping27 rate. In a homogeneous plasma in the convective

steady-state, which is where our gain calculation applies, this

condition is g0 � �2=vg2. Working at the peak of the non-

relativistic gain curve, we have a spatial gain rate of gnr
0 ¼ 3:28

�10�4x0=c and �2=vg2 ¼ 0:0611x0=c. Therefore, we are in

the strong damping limit.

B. Relativistic modification

We now explore the impact of special relativity on linear

gain. Estabrook and Kruer7 included an analysis of SRS for

temperatures for which relativistic corrections are important

and performed 1.5D PIC simulations of laser and plasma con-

ditions where the plasma wave is weakly damped. They found

that non-relativistic linear theory does not adequately describe

the wavenumber of the fastest growing mode in high-

temperature (�64 keV) plasmas, but taking into account the

effective (reduced) plasma frequency and corresponding den-

sity due to special relativity brings theory and simulation into

better agreement. More recently, Bergman and Eliasson

derived a fully relativistic expression for the unmagnetized

plasma dielectric function,28 and Bers et al. derived approxi-

mate expressions relevant to current and near-future deute-

rium-tritium fusion plasmas.29 Palastro et al. have also derived

a fully relativistic description of Thomson scattering.30

In this subsection, we simply make some heuristic

changes to the formulas in Sec. III A to account for special rel-

ativity. We replace the susceptibility in Eq. (8) with the relativ-

istic one of Bergman and Eliasson, which is computed using a

3D J€uttner-Synge distribution, as opposed to a Maxwellian

distribution.

Given the 3D J€uttner-Synge distribution,

f ðcÞ ¼ n0le�lc

4pm3
ec3K2ðlÞ

; (11)

FIG. 2. Several calculations of the linear convective BSRS gain spectra for a

box 1790c=x0 ð100 lmÞ long. The dashed-dotted curves are analytic results,

and the (dashed, solid) ones take into account PIC effects with the (5,2)-pass

filter.
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the electron susceptibility is given by

veðj2;X2Þ ¼
l
j2

2

1� l
K2ðlÞ

@2

@l2

Pðl; j2=X2Þ
l

� �
; (12)

where c is the relativistic factor, l � mec2=Te; K2ðlÞ is the

modified Bessel function of the second kind, X2 � x2=xpe,

and j2 � k2c=xpe. P is given by

Pðl; j2=X2Þ �
ð1

1

e�lcffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p dc

c2ð1� j2
2=X

2
2Þ þ j2

2=X
2
2

� ipr
2j2=X2

e�lðj2=X2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

2
=X2

2�1
p

; (13)

where r ¼ 0 for X2
2 	 j2

2 and r ¼ 1 for X2
2 < j2

2.

We can also take into account relativistic effects in the

electromagnetic dispersion relation, x2 ¼ x2
pe þ c2k2; by using

a relativistic version of the plasma frequency

x2
pe ! x2

pe

l2

K2ðlÞ

ð1
1

@2

@l2

e�lc

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
c4

dc

� x2
pe 1� 5

2l

� �
for l
 1: (14)

We use this relativistic plasma frequency when we calculate

k0 and k1. The decrease in the effective plasma frequency

with temperature is due to relativistic corrections to the inter-

nal energy of the plasma.31 However, this change only has a

relatively small impact on the gain at the temperature we use

in our simulations. It is also possible to calculate k0 and k1

using the fully relativistic transverse dispersion relation from

Ref. 28, but we did not attempt to do so.

The overall effect of special relativity on the gain curve is

shown in Figure 2. Notice that the peak of the relativistic gain

curve lies above the peak of the non-relativistic gain curve,

and the peak occurs at a shorter wavelength. This difference

occurs because there are less particles and a shallower slope at

the plasma wave’s phase velocity in the J€uttner distribution

than in the Maxwellian distribution, resulting in weaker Lan-

dau damping. At the peak of the analytic non-relativistic gain

curve (k1 ¼ 1:659k0 ¼ 582:37 nm), for which k2kDe ¼ 0:289,

the non-relativistic damping rate is 3:24� 10�3x0, while the

relativistic rate is 2:44� 10�3x0: The strong damping limit

still applies at the peak of the relativistic gain curve

(k1 ¼ 1:655k0 ¼ 580:88 nm), for which the spatial gain rate

is gr
0 ¼ 4:43� 10�4x0=c and �2=vg2 ¼ 0:0465x0=c.

We also performed some gain calculations using the ap-

proximate expression of Bers et al. for the relativistic longi-

tudinal dispersion relation. Their expression shifts the gain

curve down in wavelength significantly more than numeri-

cally integrating the formula of Bergman and Eliasson.

C. PIC modification

We can improve the agreement between simulation and

theoretical results by taking into account a few known aspects

of finite-difference PIC codes: finite-size particles, differenc-

ing operators, and field smoothing plus compensation.22

The particles have a finite size because the charge and current

are interpolated to a grid via the “shape factor” Sð~xÞ

qdð~xÞ ! qSð~xÞ: (15)

To reduce the self-heating and spurious noise from aliasing,

we use second-order B-splines. Transforming to Fourier

space,

qSð~xÞ ! qSð~kÞ; (16)

where

SðkÞ ¼ 1

L

sinðkD=2Þ
kD=2

� �3

(17)

for 1D simulations, with D being the cell width.

In finite-difference codes, like OSIRIS, differencing

operators modify the dispersion relation by changing the

relationship between the charge density q, longitudinal elec-

tric field E2, and electrostatic potential /. In Fourier space,

4pqðk2Þ ¼ k2
2

sinðk2D=2Þ
k2D=2

� �2

/ðk2Þ

¼ K2ðk2Þ/ðk2Þ (18)

and

E2ðk2Þ ¼ �ik2

sinðk2DÞ
k2D

/ðk2Þ

¼ �ijðk2Þ/ðk2Þ: (19)

We additionally smooth the fields in our simulations to

further reduce the effects of aliasing, and we compensate to

reduce numerical modifications to the dispersion relation for

small ~k. Without the use of splines and smoothing, grid heat-

ing instabilities occur for D � 3kDe. Finite-difference codes,

such as OSIRIS, can use a digital filter to compensate for

this effect. We perform the filtering of some quantity / on

the grid by replacing

/j with
W/j�1 þ /j þW/jþ1

1þ 2W
; (20)

where j is the grid index and W is a weighting factor. Trans-

forming into Fourier space,

/f ðkÞ ¼
1þ 2WcosðkDÞ

1þ 2W
/0ðkÞ

¼ SMWðkDÞ/0ðkÞ: (21)

We use two filters in the simulations in this paper. The first is

a two-pass filter, which we use unless stated otherwise. The

first pass has a stencil of 1
4
(1,2,1) (W¼ 1/2) and the second

has a stencil of 1
4
(�1,6,�1) (W¼�1/6). Therefore,

SMðkÞ ¼ SM1=2ðkÞSM�1=6ðkÞ

¼ 1þ cosðkDÞ
2

3� cosðkDÞ
2

: (22)
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The second filter has five passes, and we choose it because it

causes less deviation from the longitudinal dispersion rela-

tion without PIC effects than the 2-pass filter. The first four

passes use a stencil of 1
4
(1,2,1) (W¼ 1/2) and the last pass

uses a stencil of 1
4
(�5,14, �5) (W¼�5/14). We perform

additional simulations with this filter to observe the effect on

the gain curve

SMðkÞ ¼ SM4
1=2ðkÞSM�5=14ðkÞ

¼ 1þ cosðkDÞ
2

� �4
14� 10 cosðkDÞ

4
: (23)

The particle shape factor, differencing operators, and

field smoothing only affect the plasma frequency. We simply

make the change

x2
pe ! x2

pe

k2jðk2Þ
K2ðk2Þ

ðL � Sðk2ÞÞ2SMðk2Þ; (24)

everywhere xpe appears in our formulas to account for their

effects.

The effect of the shape factor, differencing operators,

and both the 2-pass and 5-pass filters on the relativistic and

non-relativistic gain curves is shown in Figure 2. Checking

the strong damping limit condition for the 2-pass filter, in the

non-relativistic case, the peak gain rate drops to gnr
0 ¼ 2:75

�10�4x0=c with �2=vg2 ¼ 0:0636x0=c, while for the relativ-

istic case, it drops to gr
0 ¼ 3:70� 10�4x0=c with �2=vg2

¼ 0:0531x0=c.

IV. SUBTRACTION TECHNIQUE

We use a subtraction technique32 in our data analysis to

clearly see waves with amplitudes below the background

plasma fluctuation level. The technique requires running two

simulations, the first with a perturbation whose effects we

wish to examine, and the second without the perturbation,

but with the same random number generator seed. We then

subtract the results of the second simulation from the results

of the first. In our case, the first simulation has both a back-

ward propagating light seed pulse and a forward propagating

pump, while the second simulation has just the pump.

Figure 3 shows the electrostatic field induced by the

beating of the pump and the seed pulse. The seed pulse in

this simulation has a Gaussian-like profile, as described in

Sec. V, with k1 ¼ 1:644k0 ð577nmÞ and I1s ¼ 5� 10�4I0.

The amplitude of the plasma wave is so small that we cannot

distinguish it from the background fluctuations without using

the subtraction technique. In the subtracted result, back-

ground fluctuations enter the simulation starting at the sides

of the box due to the thermalizing boundary conditions.

Fluctuations will always re-enter the subtracted data as the

two simulations become uncorrelated, but the re-emission of

particles with random speeds at the boundaries exacerbates

this situation.

Because we do not observe meaningful SRS without a

seed, we use the subtraction technique as a means of separat-

ing the scattered light from the pump light when pump

depletion is not significant. When pump depletion is small,

the subtraction technique for the transverse electric field

works well for finding the scattered light at all positions in

the box. However, when pump depletion becomes signifi-

cant, the subtraction technique does not produce good results

by itself anywhere except at the far left side of the box,

where pump depletion does not occur. Therefore, we can still

use the subtraction technique to observe the reflectivity at

the left side of the box, but we need to filter out the pump in

Fourier space to observe the scattered light anywhere else in

the box.

The number of particles per cell in the simulation affects

the usefulness of the subtraction technique. Fluctuations take

longer to enter the simulation as we increase the number of

particles per cell. When we decrease the number of particles

per cell, low-intensity seed pulses become more difficult to

distinguish from the background fluctuations when we use

the subtraction technique, until we cannot distinguish the

peak of a pulse with I1s ¼ 5� 10�4I0 from the fluctuations

in simulations with 512 particles per cell. However, changing

FIG. 3. The longitudinal electric field in a simulation with (a) and without

(b) a seed pulse. Subtracting the latter from the former reveals the plasma

wave (c) and (d).
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the number of particles per cell has no significant effect on

the convective amplification of the seed pulse.

V. CONVECTIVE GAIN SIMULATIONS
AND COUPLED-MODE RESULTS

A. OSIRIS convective gain simulations

We perform OSIRIS PIC simulations to observe seed

amplification in the linear regime and determine under what

conditions SRS enters the nonlinear regime. The simulations

begin at t¼ 0 with the pump incident from the left. After

2000x�1
0 , the seed enters from the right, by which time the

pump has crossed the box. We use two different temporal

profiles, or “shapes,” for the seed and vary its wavelength and

intensity. The first shape is approximately Gaussian and rises

from zero to its peak amplitude in s ¼ 500x�1
0 , then falls

back to zero over another 500x�1
0 , for �500x�1

0 FWHM. The

second shape is a flat-top pulse with a Gaussian-like rise and

fall time of s ¼ 200x�1
0 and a constant peak amplitude for

600x�1
0 in between. The two pulse shapes are plotted in

Figure 4. We describe the seed pulse using the notation

I1ðz ¼ L; tÞ ¼ I1ssðtÞ, so that s(t) describes the pulse shape

and I1s is the maximum incident intensity. In our simulations

using seed pulses, I1s 	 5� 10�4I0.

Figure 5 shows the scattered light and the plasma wave as

a function of position and time in an OSIRIS PIC simulation

when we use a Gaussian-like seed pulse with I1s ¼ 5� 10�4I0

and k1 ¼ 1:644k0. We also include line-outs of the scattered

light amplitude vs. position at various times to show the evolu-

tion of the seed pulse more clearly as it crosses the box from

right to left. We use a Hilbert transform to envelope the results,

producing a smooth appearance.

We define the measured gain, gmeas, of a pulse as

gmeas � ln
maxðI1ðz ¼ 0; tÞÞ

I1s

� �
: (25)

The plot at the top of Figure 6 shows the gain we measure in

simulations when we vary the seed wavelength while keeping

I1s fixed at 5� 10�4I0. The linear relativistic gain peaks near

k1 ¼ 1:644k0 ð577nmÞ in simulations with a 2-pass filter and

near k1 ¼ 1:650k0 ð579 nmÞ in simulations with a 5-pass fil-

ter. Our simulation results agree with these predictions. We

also plot a gain curve from simulations using a non-relativistic

particle pusher and a Maxwellian velocity distribution. This

non-relativistic curve lies below the relativistic one at most

points, as we expect, and the location of its peak agrees with

the gain curve from non-relativistic theory with a 2-pass

filter.

In the plot on the bottom of Figure 6, we see how the

measured gain changes as we vary I1s while keeping the seed

wavelength fixed at k1 ¼ 1:644k0. The measured gain of the

Gaussian-like pulse remains relatively constant as we increase

the initial seed intensity, until the seed intensity reaches

several times the pump intensity. This behavior indicates that

FIG. 5. Scattered light vs. position and time (a), lineouts of the scattered

light vs. position at various times (b), and plasma wave amplitude (c) from a

simulation using a Gaussian-like seed pulse with I1s ¼ 5� 10�4I0 and

k1 ¼ 1:644k0.

FIG. 4. The shapes of the seed pulses in the simulations. A Gaussian-like

pulse (a) with a 500x�1
0 rise and fall time (�500x�1

0 FWHM), and a flat-top

pulse (b) with a 200x�1
0 Gaussian-like rise and fall, and a steady amplitude

for 600x�1
0 in between.
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we are in the linear regime for even large seed amplitudes.

The deviation from linear theory at the highest amplitudes is

due to pump depletion. However, the measured gain of the

flat-top pulse increases with seed intensity before falling off.

This inflationary gain is caused by the higher amplitude seed

pulse generating a larger amplitude plasma wave and, in the

presence of the seed pulse, particles executing several boun-

ces, thus decreasing the Landau damping rate. We explain this

effect in more detail in the following sections. We note that

if we had decreased (increased) the seed pulse length, the

deviation from linear behavior would occur at higher (lower)

seed intensity.

B. The coupled-mode equations

The measured gain of a seed pulse can differ from the

steady-state linear result due to several linear and nonlinear

effects. Linear effects include pulse shape, with each fre-

quency in a spectrum of incident frequencies being amplified

at a different rate. Nonlinear effects include pump depletion

and nonlinear (kinetic) and nonlocal reductions to the real

part of the frequency and the damping rate of the plasma

wave. In this section, we investigate the effect of the pulse

shape on the measured gain using the coupled-mode equa-

tions.33,34 A comparison of the coupled-mode and OSIRIS

results, similar to that performed by Wang et al. in Ref. 35,

isolates linear from truly nonlinear, kinetic physics and pro-

vides confidence in the PIC method.

In the coupled-mode equations, we let (xi; ~ki) of the car-

rier waves be real and work with complex envelopes aið~x; tÞ.
We assume that the envelopes vary slowly with respect to

the carriers, such that jraij � j~kiaij and j@ai=@tj � jxiaij.
The complex envelopes for the action amplitudes aj relate

to the physical quantities by

~Aj ¼ �i
2p
xj

� �1=2

aj exp½ið~kj �~x � xjtÞ�k̂ þ cc; j ¼ 0; 1

(26)

for light waves, with Aj the vector potential, and by

n1 ¼
ik2

2

2nB

mex2

� �1=2

a2 exp½ið~k2 �~x � x2tÞ� þ cc; (27)

for the plasma wave. nB is the spatially varying background

electron density, n1 is the perturbation on top of it, and cc
denotes complex conjugate.

The couple mode equations are

@

@t
þ~vg0 � r þ �0 þ id0

� �
a0 ¼ Ka1a2; (28)

@

@t
þ~vg1 � r þ �1 þ id1

� �
a1 ¼ �Ka0a�2; (29)

@

@t
þ~vg2 � r þ �2 þ id2

� �
a2 ¼ �Ka0a�1; (30)

where the coupling constant is

K � k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0x1x2
p

x2
peffiffiffiffiffiffiffiffiffiffiffiffiffi

8nBme

p ; (31)

�i is the damping rate of mode i, and di � ðx2
pe � x2

i

þ c2k2
i Þ=ð2xiÞ is the detuning frequency for the light waves,

which reflects the departure of mode i from being a natural

mode of the plasma. We assume no inverse bremsstrahlung,

which is the case in the PIC simulations, so �0 ¼ �1 ¼ 0.

The Landau damping rate, �2 ¼ ei=ð@er=@x2Þ, where

er ¼ Re½e�; ei ¼ Im½e�, and e is the kinetic dielectric function.

We set the light-wave detuning, d0 ¼ d1 ¼ 0. For the elec-

trostatic mode, we find d2 using the kinetic equation,

d2 ¼ �er=ð@er=@x2Þ. The equations in Secs. III B and III C

allow us to take into account special relativity and PIC

effects when we calculate the coefficients.

We can directly compare the results from OSIRIS and

the coupled-mode solver by examining the reflected light.

Figure 7 shows the reflected light from runs with I1s ¼ 5

�10�4I0 using flat-top pulses with k1 ¼ 1:644k0 and

1:650k0. In Figure 8, we compare the measured gain from

FIG. 6. Measured gain in simulations with box length 1790c=x0 ð100 lmÞ
vs. seed wavelength (a) and seed intensity I1s (b). Plotted are the gains we

measure using a Gaussian-like pulse (green with square markers) and a flat-

top pulse (blue with circle markers), both with k1 ¼ 1:644k0. (a) includes

the gain from simulations with a Gaussian-like pulse and the 5-pass filter

(black with ‘x’ markers), plus those without relativistic effects (brown with

“þ” markers). Several theoretical gain curves taking into account PIC

effects are included: 2-pass non-relativistic is dashed-dotted red, 2-pass rela-

tivistic is solid magenta, and 5-pass relativistic is dashed purple.
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PIC simulations and the coupled-mode solver for various

wavelengths. The simulation and coupled-mode results are

in excellent agreement for both the Gaussian-like and flat-

top pulse runs.

The agreement between simulation and coupled-mode

results is not as good when we examine the longitudinal

field. Figure 9 shows the amplitude of the longitudinal field

at t ¼ 4000x�1
0 for the same runs as shown in Figure 7. The

disagreement occurs soon after the wave begins growing and

is visible at about x ¼ 300c=x0. We are not yet sure of the

reason for this disagreement. The disagreement becomes

worse as background fluctuations begin to enter the PIC

results after x ¼ 400c=x0.

VI. INFLATION AFTER SEED PASSAGE

For short seed pulses, we find significant reflectivity

well after the seed propagates out of the simulation box. The

pump now directly interacts with the Langmuir wave that is

still present in the plasma after the seed leaves the box.

Without trapped particles, the Langmuir wave is described

by its linear dispersion relation, BSRS remains in the

strongly damped limit, and no observable growth of BSRS

occurs for the pump intensity and the plasma length of inter-

est. However, a small amplitude wave can evolve into a non-

linear weakly damped wave after the trapped particles

execute a few bounces.14,15 The period for a bounce, or

bounce time, is sB � 2p=xB, where xB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE2k=me

p
is the

bounce frequency for deeply trapped electrons, E2 is the

electric field amplitude, and k is the wavenumber of the

wave. As particles are trapped, the damping rate decreases

below its linear value to a residual level which depends on

details of the problem.36 The ponderomotive beating of the

pump and the scattered light will drive the wave to increas-

ing amplitudes. Such a situation will lead to noticeable

reflectivity later in the simulation. The seed pulse must be

the cause of any such reflectivity because, with the pump

amplitude we use in our simulations, BSRS is negligible

without a seed. BSRS that occurs after the seed has left the

box is both useful for isolating the process of kinetic infla-

tion11 and is potentially relevant to situations where BSRS in

one region of space or time seeds BSRS in another one, creat-

ing a plasma wave that triggers an inflationary burst of BSRS.

Figure 10 shows the scattered light and plasma wave

for times after the seed leaves the box in a simulation using

a Gaussian-like seed pulse with I1s ¼ 8� 10�3I0 and

k1 ¼ 1:644k0. We observe high reflectivity after t¼ 10000x�1
0 ,

along with a corresponding growth in the plasma wave. Figure

11 shows lineouts of the scattered light and longitudinal field at

x¼ 550c=x0 along with a comparison with the coupled-mode

result. For the longitudinal field from the PIC simulation, we fil-

ter out all modes except 1:4x0=c
 k
 1:5x0=c. Notice the

dip in the plasma wave amplitude around t¼ 4500x�1
0 , corre-

sponding to the drop in the seed’s amplitude, before the plasma

wave begins to grow again.

We verify that kinetic inflation is occurring by tracking

particles traveling near the plasma wave phase velocity and

plotting their orbits in the frame of the wave, as done in Figure

12 from t ¼ 5000x�1
0 to t ¼ 7000x�1

0 . The elliptic trajecto-

ries are clear indicators of particle trapping. During this time,

the distribution function begins to flatten around the Langmuir

wave phase velocity, as seen in Figure 13, which is another in-

dication of particle trapping and a clear indication of the

FIG. 7. The BSRS reflected light using a flat-top seed with k1 ¼ 1:644k0

(a) and 1:650k0 (b). The simulation results are plotted with solid magenta

lines while the coupled-mode results are plotted with dashed-dotted black

lines. The horizontal dashed red line indicates the maximum seed amplitude

with no gain.

FIG. 8. The measured gain in a box of length 1790c=x0 ð100 lmÞ predicted

by the coupled-mode solver as we vary the wavelength using a Gaussian-

like pulse (dashed brown with ‘þ’ markers) and a flat-top pulse (dashed ma-

genta with circle markers). For comparison, we include the PIC simulation

result for the Gaussian-like pulse (solid blue with “x” markers) and the flat-

top pulse (solid red with square markers) along with the linear relativistic

gain curve taking into account PIC effects (dashed-dotted green).

FIG. 9. The longitudinal field vs. space at t ¼ 4000x�1
0 when using a flat-

top seed with k1 ¼ 1:644k0 (a) and 1:650k0 (b); the same runs as used in

Fig. 7. The simulation results are plotted with solid magenta lines, while the

coupled-mode results are plotted with dashed-dotted black lines.
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reduction of Landau damping. The tail is flattened to much

higher velocities during the larger burst of SRS that grows af-

ter the seed leaves; for example, as shown at t ¼ 17 000x�1
0 .

This larger tail in our simulations potentially contributes to

the energetic electrons (commonly referred to as “hot electro-

ns”) seen in recent experiments.37 The production of hot elec-

tron tails by SRS is an active area of research,38,39 but the

small flattening early in time is sufficient to affect the growth

and further onset of SRS we are studying here.

Since particle trapping causes the inflationary scattering

at late times, the inflationary bursts will occur earlier if the

seed drives a larger Langmuir wave with a shorter sB, so that

the trapped particles accumulate bounces faster. We can

increase the Langmuir wave amplitude by increasing the in-

tensity, the duration, or choosing a seed wavelength that pro-

duces a higher gain.

We first vary the initial amplitude of the seed. Figure 14

shows that the first burst of reflected light has a maximum

around t ¼ 17 000x�1
0 when we use a Gaussian-like seed pulse

with I1s ¼ 4� 10�3I0 and k1 ¼ 1:644k0. As we increase I1s,

the burst moves earlier, but the difference in amplitude between

FIG. 10. The scattered light (a) and the plasma wave (b) seen when we extend

the duration of the simulation using a Gaussian-like seed pulse with I1s ¼ 8

�10�3I0 and k1 ¼ 1:644k0. The seed exits the box around t ¼ 5000x�1
0 .

FIG. 11. Evolution of the scattered light (a) and the longitudinal field (the

PIC simulation field is filtered) (b) with time at x ¼ 550c=x0 for the simula-

tion of Figure 10. The simulation results are plotted with solid blue lines and

the coupled-mode results are plotted with dashed black lines.

FIG. 12. Orbits of particles trapped in the plasma wave in the simulation of

Figure 10. The orbits are plotted for 2000x�1
0 starting at t0 ¼ 5000x�1

0 in

the wave frame, where vph ¼ 0:271c is the plasma wave phase speed and the

orbits are centered around the relativistic pph ¼ 0:282mec.

FIG. 13. The distribution functions from the simulation of Figure 10 at

t ¼ 6000x�1
0 (solid blue) and t ¼ 17 000x�1

0 (dashed black) along with the

J€uttner distribution for a 2.5 keV electron plasma (dashed-dotted red). The

measured distributions have a plateaus beginning around cb ¼ 0:26, indicat-

ing particle trapping.
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the burst and final seed amplitude also decreases. As a clear

demonstration of the effect of the higher intensity seeds, in

Table I, we examine the plasma wave amplitudes and particle

bounce times for the simulations in Figure 14. We examine a

selection of particles near the plasma wave phase velocity

between x ¼ 350c=x0 and x ¼ 450c=x0 at t ¼ 5000x�1
0 . We

use the most deeply trapped particle to determine the time it

takes to complete one bounce. To calculate the theoretical

bounce time, we filter out all plasma wave modes except

1:4x0=c 
 k 
 1:5x0=c and average the field amplitude over

the bounce time along the particle’s track. We then substitute

the measured values of the amplitude and wavenumber

(k ¼ 1:44x0=c) into the formula for the bounce time. The

results are in Table I. The measured bounce times are slightly

(�10%) longer than the simple expression. We believe this

discrepancy is due to the fact that the amplitude of the wave is

changing with time and because the calculation is for a para-

bolic potential well, while the particles are actually trapped in

a sinusoidal well.

Besides lowering the kinetic damping rate, another well-

known effect of particle trapping is the nonlinear frequency

down-shift of the plasma wave.15 As the plasma wave grows,

it will shift downward in frequency because it will trap more

particles. According to the frequency matching condition in

Eq. (1a), the down-shift in the frequency of the plasma wave

should be accompanied by an up-shift in the frequency of the

scattered light. We examine this down-shift using a Wigner

transform with a Choi filter.40 The Wigner transform takes a

function of time and computes its representation as a func-

tion of both frequency and time. It maps f ðtÞ ! f ðx; tÞ.

The Wigner transform results for a run with a flat-top

seed with I1s ¼ 8� 10�3I0 and k1 ¼ 1:638k0 are shown in

Figure 15. The results for the same run, except using a seed

with k1 ¼ 1:627k0, are in Figure 16. In both cases, the seed

appears in the Wigner transform scattered light plots around

t ¼ 4500x�1
0 , when the seed reaches the left side of the box.

The scattered light frequency shifts up while the plasma

wave frequency shifts down, as expected due to trapping.

The inflationary bursts begin growing near the frequency

with the highest gain regardless of the seed’s central fre-

quency, consistent with a harmonic oscillator that is driven

off-resonance. The initial growth is near the central frequency

of the seed in the case with k1 ¼ 1:638k0 and in the seed’s

lower-frequency tail in the case with k1 ¼ 1:627k0. This

observation suggests that the ponderomotive beating of the

seed and the pump simply disturbs the plasma and provides an

initial level for growth, but the subsequent growth occurs at

the most unstable mode.

There are two inflationary bursts in the scattered light

plot in Figure 15. According to Ref. 17, the separation of the

bursts in time is 2p=DxNL, where DxNL is the nonlinear shift

FIG. 14. The reflected light in extended duration simulations using a

Gaussian-like seed pulse with k1 ¼ 1:644k0 and various maximum initial

intensities. Shown are I1s ¼ 4� 10�3I0 (solid blue), 8� 10�3I0 (dotted

green), 0:016I0 (dashed-dotted red), and 0:032I0 (dashed black).

TABLE I. The bounce times of deeply trapped electrons measured in the

simulations of Figure 14, along with the bounce times calculated using the

average plasma wave field amplitude along the particle’s trajectory.

I1s Avg. EPW Amp. Calc. sB Meas. sB

½I0� ½E0� ½x�1
0 � ½x�1

0 �

4� 10�3 0.020 610 675

8� 10�3 0.033 480 550

0.016 0.049 390 415

0.032 0.071 320 350

FIG. 15. The scattered light (a) and plasma wave (b) in a simulation using a

flat-top seed pulse with I1s ¼ 8� 10�3I0 and k1 ¼ 1:638k0. Below them are

the Wigner transforms of the reflected light at x¼ 0 (c), the plasma wave at

x ¼ 500c=x0 (d), and the plasma wave at x ¼ 900c=x0 (e).
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of the scattered light and plasma wave from their non-

inflationary resonant frequencies, where peak linear gain occurs.

In our case, the bursts occur at different frequencies. The first is

roughly on-resonance while the second has DxNL � 0:002x0.

Averaging the two, we have Dxavg
NL ¼ 0:001x0 or a separation

of about 6000x�1
0 , which is in good agreement with the actual

separation of the two bursts. Figures 15 and 16 show that the

seed wavelength also affects the time required for inflation to

set in. We explore this effect in Secs. VII and VIII.

Increasing the width of the seed drives the plasma wave

longer, increasing its amplitude and causing inflationary

bursts to occur earlier. In Figure 17, we vary the duration of

a flat-top pulse while keeping the rise and fall time at

200x�1
0 . The burst of high reflectivity moves earlier and,

correspondingly, the plasma wave reaches a high amplitude

quicker as we increase the pulse duration from 1000x�1
0 to

3000x�1
0 . However, this effect only occurs if we drive near

resonance. If we drive off resonance, then the large bursts do

not occur, and the reflectivity oscillates with a period of

2p=DxNR, where DxNR is the difference between the seed

frequency and the resonant frequency, at which inflationary

SRS grows.

VII. INFLATION OF THE SEED

When the seed pulse width becomes comparable to the

bounce time, then the seed itself can undergo inflation, illus-

trating the difference between the linear and inflationary

regimes. We perform simulations using a flat-top pulse with a

duration of 6000x�1
0 with I1s ¼ 8� 10�3I0 at various wave-

lengths. The reflectivity plot in Figure 18 demonstrates the

variation of the scattered light with time in the simulations as

compared to the steady-state values from linear theory. The

reflectivities seen in the simulations can significantly

exceed the linear theory values, particularly for the seeds

with k1 ¼ 1:638k0 and 1:644k0. The runs using seeds with

k1 ¼ 1:632k0 and 1:650k0 reach levels above the linear theory

values, but dip below linear values several times due to driv-

ing off resonance. In these four cases, inflationary scattering

continues after the seed ends around x0t ¼ 10 200. When we

use seeds with k1 ¼ 1:627k0 and 1:658k0, the reflectivity

does not reach significantly above the linear value and drops

down when the seed ends, because inflationary scattering does

not occur easily when the seed is far from resonance.

FIG. 16. The scattered light (a) and plasma wave (b) in a simulation using a

flat-top seed pulse with I1s ¼ 8� 10�3I0 and k1 ¼ 1:627k0. Below them are

the Wigner transforms of the reflected light at x¼ 0 (c) and the plasma wave

at x ¼ 900c=x0 (d).

FIG. 17. Results from simulations with flat-top seed pulses with I1s ¼ 8

�10�3I0 and k1 ¼ 1:644k0. The scattered light (left) and plasma wave

(right) for simulations using a pulse duration of ð1000; 3000Þx�1
0 are in pan-

els (a-b, c-d), respectively.

FIG. 18. The reflected light seen in several simulations using a flat-top seed

of duration 6000x�1
0 with I1s ¼ 8� 10�3I0 for various wavelengths. The

two top curves are for seeds with k1 ¼ 1:638k0 (solid red) and 1:644k0

(dashed cyan). The four lower curves are for seeds with k1 ¼ 1:627k0 (dot-

ted blue), 1:632k0 (dashed green), 1:650k0 (dashed-dotted purple), and

1:658k0 (solid yellow). For comparison, we mark the steady-state linear rela-

tivistic PIC values using horizontal dashes on the left side of the plot. The

red vertical dash on the lower right side of the plot indicates approximately

when the seeds end.
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We observe oscillations in the reflectivity in all the

cases, except when we use the seeds with k1 ¼ 1:638k0 and

1:644k0. These oscillations are due to the scattered light seed

driving SRS off resonance.17 The ponderomotive beating of

the pump and scattered light drives the plasma wave, so if

the phase of the beat drive leads the plasma wave by p=2,

the plasma wave no longer grows. The plasma wave density

n1 / � @
@x E2, while the beat drive Fp / � @

@x E0E1. The

product

Rp ¼
@

@x
E2

� �
@

@x
E0E1

� �
; (32)

indicates the phase difference between the beat drive and the

plasma wave.16 We also note that the change in the pump

energy density with time is given by

@W0

@t
¼ � e

8pmex1k2

Rp: (33)

Therefore, if Rp is positive, the waves are in phase, the beat

drive is resonantly driving the plasma wave, and energy is

transferred from the pump to the seed and plasma wave. The

inverse applies if Rp is negative.

Figure 19 shows the scattered light and the resonance

plot for the seed with k1 ¼ 1:644k0. We smooth the result

from the resonance diagnostic in x using a 6-point moving

average. Notice the dip (valley) in the scattered light ampli-

tude around x ¼ 1250c=x0; t ¼ 7000x�1
0 and the corre-

sponding negative area on the resonance plot around

x ¼ 1500c=x0. When this drop occurs, the beat drive and the

plasma wave are out of phase, so energy flows from the scat-

tered light wave to the pump. This shift away from resonance

is due to the nonlinear frequency shift of the plasma wave,

explained in Sec. VI. The non-resonant drive is also respon-

sible for the oscillations we see in the reflectivity plot of

Figure 18.

Figure 20 shows the same plots as Figure 19, except

using a seed with k1 ¼ 1:638k0. This seed continuously

drives the scattered light to its maximum amplitude before

dropping off, whereas the one with k1 ¼ 1:644k0 drives a

lower-amplitude burst of scattered light before it produces a

second burst at much higher amplitude. Notice that the reso-

nance plot in Figure 20 shows that the beat wave and plasma

wave are in resonance until the peak of the scattered light

burst. This resonant drive leads to a burst of scattered light at

higher amplitude than in the k1 ¼ 1:644k0 case.

VIII. INFLATION OF CONTINUOUS SEEDS

In this section, we extend the flat-top seed pulse so that

it remains on through the end of the simulation. Based on

what we have observed in Secs. VI and VII, we expect the

inflationary behavior we see in these simulations to depend

on the seed intensity and wavelength. We know that there

must be an intensity threshold below which the seed does not

drive inflationary behavior in the simulations (very long

bounce times), because we see negligible scattering without

a seed. However, as we saw in Sec. VII, a seed that is intense

enough to drive inflation on resonance may not be intense

enough to drive it off resonance.

Furthermore, the use of continuous seeds is related to past

work by Winjum et al. on scattering off of plasma wave pack-

ets.17 Light scattering off a wave packet that has undergone a

nonlinear frequency shift acts as a seed for BSRS in the unper-

turbed background plasma. However, the beat drive frequency

is not a natural mode of the background plasma. This non-

resonant beat drive leads to oscillations in the reflected light

with a period 2p=DxNL, where DxNL is the nonlinear fre-

quency shift of the plasma wave, much like the amplitude of a

simple harmonic oscillator varies when driven off resonance.

In this section, we examine the effect of resonant and non-

resonant drive in more detail by using continuous seeds at

different wavelengths and intensities and examining the results

using plots of the reflected light.

Figure 21 shows the time-average measured gain for vari-

ous seed intensities with k1 ¼ 1:644k0 and 1:658k0. When we

use a seed with k1 ¼ 1:644k0, an intensity of 1:25� 10�4I0

(smallest value shown) is enough to cause inflation. However,

when we use a seed with k1 ¼ 1:658k0, we do not see infla-

tion until the seed intensity reaches 8� 10�3I0. The measured

FIG. 19. The scattered light (a), and the resonance product Rp from Eq. (32)

(b) for the flat-top seed of duration 6000x�1
0 with k1 ¼ 1:644k0.
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gain at both wavelengths decreases with seed intensity due to

pump depletion once inflation sets in.

In order to understand the results with a 1:658k0 seed,

we first discuss trapping effects on the SRS gain spectrum

via Eq. (10). Trapping nonlinearity leads to a reduction in vi

and thus Landau damping, as well as a down-shift in the nat-

ural plasma wave frequency. This latter effect decreases the

resonant scattered wavelength, where 1þ vr ¼ 0. In electro-

static simulations with an external driver, Fahlen showed

behavior consistent with this picture.41 For k2kDe � 0:3 and

a driver frequency above the natural frequency, the plasma

response is even smaller than the linear response. However,

when the driver is below the natural frequency, a larger

response is obtained.

Trapping, therefore, makes the gain spectrum narrower

and peaked at a smaller wavelength. The gain increases for

wavelengths near resonance. However, for wavelengths far

from resonance, the gain does not increase and, in fact, van-

ishes as vi ! 0. We can see this effect clearly by examining

Eq. (10). Since the seed is far from resonance, 1þ vr 
 vi,

so g0 / vi=ð1þ vrÞ2. This vanishing gain is clear in Figure

22(a), where the gain approaches zero in steady state for the

continuous 1:658k0 seed with I1s=I0 ¼ 4� 10�3. Thus, infla-

tion is not possible at non-resonant wavelengths. For hot,

low-density plasmas, there is no resonant wavelength, and

all phase-matched plasma waves satisfy the loss of resonance

condition k2kDe > 0:53.42 Inflation cannot occur in such a

plasma at any scattered wavelength.

The red curve in Figure 21 is for a seed wavelength that

is non-resonant and larger than the linear resonance. The

reduction of vi due to trapping cannot lead to inflation at this

wavelength, and the nonlinear frequency shift will move the

resonance farther away. Both effects conspire to reduce the

SRS gain below its linear value, which is what we observe

for the lowest seed intensities. The number of bounce orbits

completed by resonant electrons,13,43 based on the plasma

wave amplitude computed from linear theory, is >4. It is

thus consistent for trapping nonlinearity to occur and reduce

the SRS gain. The increase in gain for I1s=I0 ¼ 8� 10�3, as

shown in Figure 22(b), first develops at linear resonance,

1:644k0, not at the seed value of 1:658k0, then shifts down in

wavelength with time to finish around 1:638k0. This

FIG. 20. The scattered light (a), and the resonance product Rp from Eq. (32)

(b) for the flat-top seed of duration 6000x�1
0 with k1 ¼ 1:638k0.

FIG. 21. The time-average measured gain seen in simulations as we vary the

continuous seed intensity using seeds with k1 ¼ 1:644k0 (dashed blue) and

1:658k0 (solid red). For comparison, we use horizontal dashes on the left side

of the plot to mark the steady-state gain from linear relativistic PIC theory.

FIG. 22. The reflected light in simulations using a continuous seed with

k1 ¼ 1:658k0 (solid red in Fig. 21). I1s=I0 ¼ 4� 10�3 (a), 8� 10�3 (b), and

1:024I0 (c). The horizontal dashed-dotted line indicates the amplitude of the

seed (unamplified) reflected light.
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progression is similar to the one in Figure 16. We performed

a similar run using a flat-top seed of duration 1000x�1
0 with

a central wavelength of 1:658k0 and I1s=I0 ¼ 4� 10�3 and

observed inflation similar to that in Figure 22(b), but without

the oscillations, which raises the possibility that continuous

seeds can suppress inflation.

There are oscillations in Figure 22(b), which occur

because the seed is driving SRS off resonance. As we dis-

cussed earlier, this non-resonant drive leads to oscillations in

the reflected light with a period of 2p=DxNR, where DxNR is

the difference between the seed frequency and the resonant

frequency, at which inflationary SRS grows. Equivalently,

the DxNR is the difference between the seeded beat drive fre-

quency and the frequency of the plasma wave packet. When

we use a seed with I1s=I0 ¼ 1:024, the oscillations are more

prominent and faster, and we see no amplification, as seen in

Figure 22(c). The increased oscillation frequency is due to

the higher amplitude plasma wave undergoing a greater fre-

quency shift. We also see a beat wave pattern covering many

oscillations, which is caused by the nonlinear frequency shift

of the plasma wave packet, as described earlier in this

section.

Figure 23 shows the reflected light in simulations using

a (low-, moderate-, high-) intensity seed with I1s=I0

¼ ð1:25� 10�4; 8� 10�3; 1:024Þ, but k1 ¼ 1:644k0. When

we use the low-intensity seed, we see the reflected light

increase monotonically until it saturates near the end of the

simulation. Unlike when we used k1 ¼ 1:658k0, this seed is

near resonance, so 1þ vr � vi and g0 / 1=vi. Therefore,

particle trapping increases the gain, as explained earlier in

the paper. Oscillations begin to appear again in the simula-

tion with the moderate-intensity seed, which indicates that

the seed is slightly off resonance, as we expect to occur as

the plasma wave undergoes a nonlinear frequency shift.

These oscillations once again become more prominent

when we use the high-intensity seed, and we see a beat

wave pattern appear again.

IX. CONCLUSIONS AND FUTURE RESEARCH

Using 1D OSIRIS PIC simulations, we have studied

BSRS of a well-defined seed pulse with variable shape, in-

tensity, and wavelength. We found that backward Raman

amplification of a seed scattered light pulse can remain in

the strongly damped convective regime. That is, for a suffi-

ciently weak seed, kinetic inflation does not occur. Peak seed

amplification occurs near the peak of the linear gain spec-

trum when we take into account special relativity and PIC

effects such as finite particle size, finite-difference operators,

and field smoothing. Detailed comparisons with linear

coupled-mode predictions for envelope dynamics show

excellent agreement. If the seed pulse is intense enough, the

driven plasma wave traps particles, thereby lowering the

Landau damping after a time on the order of a bounce period.

The plasma wave continues to scatter light and grows after

the seed leaves the system, leading to kinetic inflation later

in the simulation. When we extend the seed in time, kinetic

inflation occurs while the seed is still present, and we mea-

sure dynamic seed amplification, which significantly exceeds

the linear gain rate at times, and can also turn negative at

other times (i.e., it transfers energy into the pump). When we

use a continuous seed, we find that the onset of inflation

depends strongly on the seed wavelength. When the continu-

ous seed wavelength is near the peak of the gain curve, we

see kinetic inflation occur with very low seed amplitudes,

while higher seed amplitudes are necessary to drive kinetic

inflation using a non-resonant seed.

Connecting kinetic inflation with experiments involv-

ing lasers with many hot spots or speckles is still at an early

stage. Past research has demonstrated that hot electrons,

beam acoustic modes, and side-scattered light can couple

hot-spots transversely in 2D simulations, leading to higher

BSRS from each hot spot than one would see without

coupling.19,44 Our results suggest that we can expect to see

inflationary scattering from the lower-intensity parts of the

beam interacting with flattened (non-Maxwellian) distribu-

tions or plasma waves generated in more intense parts or

increased scattered light from a few speckles triggering a

“chain reaction” of downstream inflation. If this chain reac-

tion occurs, most of the Raman in underdense laser-

produced plasmas, such as ICF targets, will be inflationary.

PIC codes can be used to model hundreds of speckles, but

to simulate large volumes across a hohlraum effectively

requires the use of envelope codes (such as pF3D), for

which reduced models of kinetic nonlinearity are being pur-

sued by several groups.45–47

An important factor we have not explored is de-trapping

mechanisms. All of our simulations in this paper are 1D and

“collisionless,” which means that plasma waves easily trap

electrons, and trapped electrons cannot leave sideways or be

scattered out of the plasma wave. Since particle trapping is

necessary for inflationary scattering, any de-trapping mecha-

nisms make it less likely to occur and impose a threshold

amplitude for inflation (the threshold in the present work is

set by the finite amplitude and duration of the seed). In par-

ticular, collisions can kick electrons out of a plasma wave’s

potential well, and electrons can traverse the plasma wave in

FIG. 23. The reflected light in simulations using a continuous seed with

k1 ¼ 1:644k0 (dashed blue in Fig. 21). I1s=I0 ¼ 1:25� 10�4 (a), 8� 10�3

(b), and 1.024 (c). The horizontal dashed-dotted line indicates the amplitude

of the seed (unamplified) reflected light.
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less than one bounce period in higher dimensions.43,48 Future

research in this area should explore the effect of these de-

trapping processes on inflation and validate reduced

descriptions.
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