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The kinetic nonlinear dispersion relation, and frequency shift ��srs, of a plasma wave driven by
stimulated Raman scattering are presented. Our theoretical calculations are fully electromagnetic,
and use an adiabatic expression for the electron susceptibility which accounts for the change in
phase velocity as the wave grows. When k�D�0.35 �k being the plasma wave number and �D the
Debye length�, ��srs is significantly larger than could be inferred by assuming that the wave is freely
propagating. Our theory is in excellent agreement with 1D Eulerian Vlasov–Maxwell simulations
when 0.3�k�D�0.58, and allows discussion of previously proposed mechanisms for Raman
saturation. In particular, we find that no “loss of resonance” of the plasma wave would limit the
Raman growth rate, and that saturation through a phase detuning between the plasma wave and the
laser drive is mitigated by wave number shifts. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2888515�

Currently, there is renewed interest in the nonlinear dis-
persion relation of electron plasma waves �EPWs�, particu-
larly with regards to backward stimulated Raman scattering
�SRS� at large k�D �where k is the EPW wave number and
�D is the Debye length�. For example, Vu et al.1 invoked
phase detuning between the plasma wave and the laser drive,
a consequence of the nonlinear frequency downshift of the
EPW, as a mechanism for Raman saturation and as an expla-
nation for the chaotic behavior of the Raman reflectivity.
Brunner and Valeo2 proposed the alternative view that the
growth of electrostatic sidebands, produced by the trapped
particle instability, is at the origin of Raman saturation and
burstiness. Rose and Russell3 found a critical wave ampli-
tude, �max�k�D�, beyond which there is no solution to the
dispersion relation of a free EPW, and called this a “loss of
resonance.” They further showed �see Ref. 4� that this fea-
ture strongly limits the growth of SRS, especially when
k�D�0.53 since �max=0 for k�D�0.53.

In this Letter we provide a theoretical estimate, ��srs, for
the frequency shift of an SRS-driven EPW, derived within
the context of the three-wave model where the total electric
field is

E� tot = Ep sin���x̂ + �El sin��l� + Es cos��s��ŷ . �1�

Ep, El, and Es are slowly varying non-negative envelopes for,
respectively, the plasma, laser, and scattered waves. The
electromagnetic wave numbers and frequencies are given by
kl,s=�x�l,s and �l,s=−�t�l,s. Those of the plasma wave are
k=�x� and �=−�t�. The phase shift between the laser drive
and the plasma wave is ����+�s−�l. As shown in Ref. 5,
at zero order in k−1�xEp, the fully electromagnetic EPW dis-
persion relation is

1 + 	d Re�
� = 0, �2�

where 
 is the electron susceptibility defined by Eq. �11� of
Ref. 5 and where

	d �
1 + 2�−1 sin���� + �−2

1 + �−1 sin����
. �3�

��Ep /Ed, Ed��kvos /2�s�Es is the amplitude of the pon-
deromotive field due to the laser drive, and vos�eEl / �m�l�.
From Eq. �3�, one recovers that the dispersion relation of a
free wave is given by Eq. �2� with 	d=1. Figures 1 and 2
show that when k�D�0.35, we find that the frequency
shift for a free wave, ��free, decreases more slowly with
��eEp /kTe than ��srs, which we explain as follows. When
solving Eq. �2�, we assume that the linear value of the driven
EPW frequency, �srs��=0�, is that of the linearly most un-
stable SRS-driven mode. For this mode, the linear value of
	d is larger than unity which implies that �srs�0� is larger
than the linear frequency, �free�0�, of a free EPW with the
same k�D. As will be proven below, 	d quickly converges
towards unity when � increases. As a result, �srs��� quickly
drops towards �free���, which makes ��srs decrease more
rapidly with � than ��free, especially when � is small. Since
the linear value of 	d increases with k�D, so does the dis-
crepancy between ��srs and ��free.

In order to test the accuracy of our theoretical estimate,
��srs, we compare it with the frequency shift ��num mea-
sured from Vlasov–Maxwell simulations of SRS. The simu-
lations are performed with the Eulerian Vlasov code ELVIS.6,7

The space and time steps are �x /�l=c�t /�l=0.03. The ve-
locity step varies from run to run, with 0.0016��v /vTe

�0.015, where vTe��Te /me�1/2 is the thermal speed. The
density profile is finite, with a central, flat region from
x /�l=28 to 242 �see Fig. 1 of Ref. 7�. The laser enters from
vacuum on the left �x=0�, and a small-amplitude seed scat-a�Electronic mail: didier.benisti@cea.fr.
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tered light wave is injected on the right with �s chosen to
match the frequency of the most unstable mode. Our simu-
lations are thus more easily related to optical mixing or
Raman amplification than to SRS growing from noise. The
seed intensity varied from Is / Il=10−5 to 10−8, without affect-
ing the dispersion relation. ��num and � are obtained via the
Hibert transform �see, e.g., Ref. 8� of the electrostatic field
Ex versus time at one x. k is computed from the distance
between zero-crossings of Ex. The scattered wave number
and frequency are found similarly.

As illustrated in Figs. 1 and 2, we always find an excel-
lent agreement between ��srs and ��num. For all runs, the
unperturbed plasma density n0 is 10% of the critical one, and
the laser vacuum wavelength is �l=0.351 m. The values of

the laser intensity, Il, and the electron temperature, Te, are
specified in the figure captions. The indicated value of k�D in
these figures refers to the wave number of the linearly most
unstable SRS-driven EPW for the given plasma and laser
parameters. ��num is only plotted before � reaches its first
local time maximum. After this maximum, and near the laser
entrance, one may see pulses in the time evolution of �. The
good agreement between ��srs and ��num usually remains for
the early pulses �not only for the first one� but eventually
breaks down together with the validity of the adiabatic ap-
proximation. Away from the laser entrance, we numerically
find that � increases with time until a sideband eventually
grows, which is reminiscent of the result of Brunner and
Valeo,2 and which then makes the notions of a central fre-
quency, and its shift, irrelevant. For the range of intensities
we investigated, Il�10 PW /cm2, and when 0.3�k�D

�0.58, we thus find that our theory breaks down mainly
when, eventually, the EPW can no longer be considered
nearly monochromatic. For lower values of k�D, and maybe
larger intensities, a nearly monochromatic EPW may reach
so large an amplitude that higher harmonics and a “DC” field
need to be accounted for in order to correctly calculate the
frequency shift, as recently reported in Ref. 12.

We now compare ��srs and ��num to well-known previ-
ously published formulas for the frequency shift, such as the
one derived by Dewar9 for a free EPW by assuming adiabatic
electron motion,

��D

�pe
�

1.09f0��u����lin/�pe���

1 + �k�D�2 − ��lin/�pe�2 . �4�

�pe is the plasma frequency, f0�u��exp�−u2 /2� /�2�,

f0�=d2f0 /du2, u���lin / �kvTe�, and �lin is the linear solution
of 1+Re�
�=0, 
 being calculated by making use of the
adiabatic approximation. �lin only exists, and therefore ��D

is only defined, when k�D�0.53. As can be seen in Fig. 2�b�,
��D yields a good estimate of ��srs and ��num only when
k�D�0.35. Morales and O’Neil10 derived the frequency shift
of a free EPW by assuming that it is suddenly excited and
found ��MO��1.63 /1.09���D. ��MO is also only defined
when k�D�0.53 and Fig. 2�b� seems to show that it is close
to ��srs and ��num only when 0.37�k�D�0.46. This agree-
ment is fortuitous: the ratio ��srs /��MO depends on � be-
cause ��srs is not simply proportional to ��. If one were to
extrapolate the values of ��D and ��MO beyond k�D=0.53
by choosing for �lin the linear frequency of the SRS-driven
wave, ��D and ��MO would be found to underestimate ��srs

whenever k�D�0.35 and k�D�0.4, respectively. An ex-
ample of this is given in Fig. 2�a�.

We now explain our theoretical solution of Eq. �2� yield-
ing ��srs. First of all 
, whose derivation is detailed in Ref.
5, is calculated by assuming adiabatic electron motion and
by accounting for the change in phase velocity as the wave
grows. As for the variations of �, and therefore those of 	d,
they are deduced from the envelope equations of the plasma
and scattered waves. The envelope equation of the EPW is
given by Eq. �5� of Ref. 5 which, at zero order in k−1�xEp,
yields
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FIG. 1. �Color online� ��srs �black solid line�, ��free �blue dashed line�, ��D

�red dot-dashed line�, ��num at x=77�l �purple circles� and at x=193�l

�green crosses� for Il=2 PW /cm2 and �a� Te=4 keV, and �b� Te=5 keV.
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FIG. 2. �Color online� �a� ��srs �black solid line�, ��D �red dot-dashed line�,
��MO �pink dots�, and ��num at x=77�l �purple circles� and at
x=232�l �green crosses� for Te=9 keV and Il=8 PW /cm2. �b� ��num �dia-
monds�, ��srs �black solid line�, ��free �green dashed line�, ��D �red dot-
dashed line�, and ��MO �pink dotted line� vs k�D when �=0.1. Each nu-
merical result is for a distinct run with a different Te, and Il=2 PW /cm2 for
Te�6 keV �k�D�0.485�, Il=4 PW /cm2 for Te=6 keV, Il=6 PW /cm2 for
Te=7 keV �k�D�0.519� and Il=8 PW /cm2 for Te�7 keV.
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� =
− Re�
�
Im�
�

cos���� + sin���� . �5�

For the scattered wave, we start with the standard governing
equations, namely, the Maxwell–Ampère law, transverse ca-

nonical momentum conservation �j�
� =−ne2A� /m�, and

Gauss’s law. As usual, we work to leading order in the space
and time variations of the envelopes, neglect �t�s and �xks,
and keep only resonant driving terms. The resulting
scattered-wave envelope equation is

��t + �ksc
2/�s��x + i�s

res�Es = �0Epei��, �6�

where �s
res���s

2−ks
2c2−�pe

2 � /2�s represents detuning of the
scattered wave from resonance and �0�kvos /4. Defining
�s�Es

−1��tEs+ �ksc
2 /�s��xEs�, which represents the SRS

growth rate for the scattered wave, Eq. �6� yields

DsEs = ��2�0
2/�s�Ese

i��; Ds � �s + i�s
res. �7�

Assuming k�const. and pump depletion is negligible so that
�0�const., Eq. �7� yields �� ��sDs�. The accuracy of the
latter expression is illustrated in Fig. 3�c� which shows simi-
lar time evolutions for the numerically measured values of
��sDs� and �. It is noteworthy that � reaches its maximum

for quite a small value of ��2.5�10−3, showing that �
quickly increases with �.

As � �and possibly k� vary nonlinearly, �s and ks vary to
maintain phase-matching ��l��+�s ,kl�k+ks�. If ks re-
mains close enough to ks

res�−��s
2−�pe

2 �1/2 /c so that
�s

res��s, then Eq. �7� gives ���0. From Eq. �5�, the varia-
tions of � then closely follow those of 1 / Im�
�. Since we
proved in Ref. 5 that, partly due to the decrease of the non-
linear Landau damping rate, 1 / Im�
� increases with the
EPW amplitude, we deduce that so does �. Physically, the
increase of 1 / Im�
� enhances the growth rate �s which,
when ���0, is the main cause for the increase of �Ds� and
therefore for that of �. Such a scenario is illustrated in Fig.
3�d� for t� t0�3500 /�l, when the increase of �Ds� is due to
that of �s.

Consider the opposite case, where ks remains approxi-
mately constant while �s upshifts. This makes �s

res, and
therefore �Ds� and �, increase. Hence, whether the scattered
wave remains on resonance �ks�ks

res� or not, � initially
quickly increases with the wave amplitude and 	d therefore
converges towards unity.

Numerically, we find an overall decrease of ks with time
�and therefore with ��, similar to that of ks

res �see Fig. 3�b��.
The variations of ks somewhat lag behind those of ks

res, and
by the time ks has significantly changed, � has grown enough
for 	d to be, and remain, very close to unity. This can be
appreciated in Fig. 3�c� where the numerically calculated
values of � are compared to those of �0 derived by assuming
that ks kept its linear value. It is therefore valid to calculate
	d by assuming ks=const., which we actually did when de-
riving ��srs.

�s may be adequately found by a simpler method than
solving Eqs. �5� and �6�. For all figures we use

�s=��0
2+�NL

2 /4−�NL /2 where the nonlinear Landau damp-
ing rate, �NL, is given by Eq. �49� of Ref. 5, and
�0=kvos�pe / �4��s��. This formula for �s matches the maxi-
mum growth rate of Ref. 11 in the linear regime, and allows
for kinetic enhancement due to Landau damping reduction. It
however does not account for observed space dependence of
�s, which may induce space variations in ��, larger at larger
laser intensities. There is therefore a limitation in Il for the
validity of our calculation, which increases with k�D. When
0.3�k�D�0.58, our theory works well at least up to
Il=2 PW /cm2.

Let us now discuss previous results on SRS with the help
of Fig. 3, which is representative of all our numerical results.
Figure 3�b� shows a constant increase of �� towards � /2
until time t1�4500�l

−1. This is consistent with Eq. �7� since,
before t1, ks remains nearly constant while �s upshifts by
about −��srs, which makes �s

res increase compared to �s. At
time t1, ks quickly approaches ks

res which makes �� drop
towards 0 and �s increase because the driving term for the
waves is proportional to cos����. Therefore, in agreement
with the results of Ref. 1, we do find that the frequency shift
induces a detuning, ��, which slows down the growth of
SRS.

However, before time tSB�12000�l
−1, �� does not vary

by more than � /2 which implies that, before this time, the
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FIG. 3. �Color online� Numerical values for Te=5 keV, k�D�0.448, and
Il=4 PW /cm2, measured at x=173.5�l of, panel �a�: � �blue solid line� and
���num� �green dashed line�; panel �b�: ks �blue solid line� and ks

res �dashed
green line�; panel �c�: ��sDs� �blue solid line�, ��Ep /Ed �green dashed line�
and �0���ks=ks

lin�, normalized to their linear values; panel �d�: �Ds� �blue
dashed line� and �s �green dot-dashed line� normalized to their maximum
values, and �2 /���� �red solid line� vs �lt.
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waves keep growing despite a large frequency shift, as is
clear from Fig. 3�a�. At time tSB a sideband develops, which
entails large and correlated fluctuations in � and ��. Al-
though we do find bursts in the SRS reflectivity, in none of
our simulations could they be attributed to the frequency
shift alone. In fact, the impact of the frequency shift on the
detuning is strongly limited by a shift in ks similar to that
plotted in Fig. 3�b�.

Such a wave number shift is consistent with the spectral
streak shown in Ref. 13 �despite having a larger frequency
shift than our theory predicts�. In this paper it was argued
that, because of this streak, the waves should be in the form
of pulses moving to the left. We do find that the waves are
amplified to the left and that SRS keeps on being regenerated
inside of the simulation box. However, we have not recov-
ered a spatially well-isolated pulse as in Ref. 13 in the runs
presented in this Letter. Unlike in Ref. 13, we have used a
Vlasov code with boundary seeding and uniform laser inten-
sity, and have not accounted for sideloss. Preliminary com-
parisons between PIC simulations with a uniform intensity
and Vlasov simulations accounting for a nonuniform inten-
sity and transverse losses seem to indicate that more isolated
pulses result from a more peaked intensity. A more detailed
study is however left for future work.

We now discuss the results of Refs. 3 and 4, that
there exists a maximum amplitude, �max, beyond which
1+Re�
� is never 0 and actually increases with �, which
implies that the SRS growth rate drops when ���max. This
“loss of resonance” scenario therefore yields an estimate of
� for Raman saturation. However, Fig. 1�b� clearly shows
that a quasimonochromatic wave can exist beyond the value
�max=0.05 predicted by Rose4 for the loss of resonance
when k�D=0.448. Since we both theoretically and numeri-
cally find �	d−1 � �1% when ��0.05, we conclude that
1+Re�
��0 and that the EPW experiences no saturation due
to a loss of resonance even when ���max. Moreover, for
the parameters of Fig. 2�a�, we find �	d−1 � �2% when
��3�10−3, which demonstrates that an EPW can be driven
very close to resonance even when k�D�0.53 and �max=0.
As noted in Ref. 5, the discrepancy between the numerical

results and the Rose and Russell predictions is mainly due to
their assuming that the wave frame is inertial when calculat-
ing 
. It is noteworthy that in his famous paper on wave
breaking, Coffey14 also assumed that the wave frame is iner-
tial. Coffey’s criterion would then predict that in the case of
Fig. 2�a� the wave would break when ��0.03, which is not
the case.

In conclusion, we theoretically derived and solved the
nonlinear dispersion relation of an SRS-driven EPW, and
found results in very good agreement with those obtained
from Vlasov–Maxwell simulations of SRS, whatever the
value of k�D investigated. We moreover showed that the fre-
quency shift of a freely propagating EPW is significantly
smaller than that of an SRS-driven EPW when k�D�0.35.
We also showed that the scattered electromagnetic wave is
initially driven off-resonance as the EPW frequency de-
creases, which entails a phase shift between the plasma wave
and the laser drive, and limits the growth of SRS.
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