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ABSTRACT

We investigate parametric processes in magnetized plasmas, driven by a large-amplitude pump light wave. Our focus is on laser–plasma
interactions relevant to high-energy-density (HED) systems, such as the National Ignition Facility and the Sandia MagLIF concept. We
present a self-contained derivation of a “parametric” dispersion relation for magnetized three-wave interactions, meaning the pump wave is
included in the equilibrium, similar to the unmagnetized work of Drake et al., Phys. Fluids 17, 778 (1974). For this, we use a multi-species
plasma fluid model and Maxwell’s equations. The application of an external B field causes right- and left-polarized light waves to propagate
with differing phase velocities. This leads to Faraday rotation of the polarization, which can be significant in HED conditions. Phase-
matching and linear wave dispersion relations show that Raman and Brillouin scattering have modified spectra due to the background B
field, though this effect is usually small in systems of current practical interest. We study a scattering process we call stimulated whistler
scattering, where a light wave decays to an electromagnetic whistler wave (x � xce) and a Langmuir wave. This only occurs in the presence
of an external B field, which is required for the whistler wave to exist.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079547

I. INTRODUCTION

Imposing a magnetic field on high-energy-density (HED) sys-
tems is a topic of much current interest. This has several motivations,
including reduced electron thermal conduction to create hotter sys-
tems (such as for x-ray sources1), laboratory astrophysics,2 and mag-
netized inertial confinement fusion (ICF) schemes. If successful, they
could provide efficient, low-cost alternatives to unmagnetized, laser-
driven ICF. In the most successful case, the Sandia MagLIF concept,3,4

an external axial magnetic field, is used to magnetize the deuterium–
tritium (DT) gas contained within a cylindrical conducting liner. A
pulsed-power machine then discharges a high current through the
liner, generating a Lorentz force which causes the liner to implode.
The DT fuel is pre-heated by a laser as the implosion alone is not suffi-
cient to heat the fuel to the ignition temperature. The magnetic field is
confined within the liner and in the absence of diffusion or other flux
loss obeys flux conservation, which states

Bzpr
2 ¼ c; (1)

where r is the radius of the cylindrical liner, Bz is the axial magnetic
field, and c is a constant. Over the course of the implosion, the mag-
netic field strength perpendicular to the direction of compression
increases as 1=r2. Thus, following the implosion, the magnetic field
traps fusion alpha particles and thermal electrons, insulating the target
and aiding ignition.

The MagLIF scheme, as well as magnetized laser-driven ICF,5,6

and magnetized parametric laser amplification7 motivate us to con-
sider magnetized laser–plasma interactions (LPI), specifically para-
metric scattering processes.8 The parametric coupling involves the
decay of a large-amplitude or “pump” wave into two or more
daughter waves. We focus on the decay of an electromagnetic (e/m)
pump wave to one e/m and one electrostatic (e/s) daughter wave. In
an unmagnetized plasma, this is limited to stimulated Brillouin
(SBS) and Raman (SRS) scattering. In order for parametric cou-
pling to occur, the following frequency and wave-vector matching
conditions must be met:

x0 ¼ x1 þ x2; (2)
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~k0 ¼~k1 þ~k2; (3)

where the subscripts 0, 1, and 2 denote the pump, scattered, and
plasma waves, respectively. Equations (2) and (3) are required by
energy and momentum conservation, respectively. In the context of
ICF, parametric processes can give rise to resonant modes which grow
exponentially in the plasma and remove energy from the target.9

Additionally, light backscattered through the optics of the experiment
can cause significant damage and even be re-amplified.10–12 Finally,
electron plasma waves can generate superthermal or “hot” electrons
which can pre-heat the fuel, thereby increasing the work required to
compress it.13

By contrast, plasma-based laser amplification schemes utilize
parametric processes to transfer energy from a long-duration, high-
amplitude laser pump to a short, low-amplitude seed pulse. While
both Raman and Brillouin amplification have been realized experi-
mentally with some success,14,15 Raman amplification is restricted to
densities less than a quarter of the critical density and requires the
seed pulse frequency to be significantly downshifted compared to the
pump. Brillouin amplification can occur up to the critical density and
negates the frequency downshift but has a lower growth rate.16

Recently, a magnetized amplification scheme has been proposed,
where the external magnetic field is neither parallel nor perpendicular
to the pump wavevector. In this scheme, low-frequency magnetohy-
drodynamic waves mediate the energy transfer between the seed and
pump. The advantages of this approach compared to unmagnetized
Raman amplification are twofold: the pump and seed are closer in
frequency, and the growth rate is higher. This method is additionally
suitable for short pulse amplification and compression.7

Laser-driven parametric processes have been extensively
researched in unmagnetized plasmas. However, the advent of experi-
ments such as MagLIF, the possibility of magnetized experiments on
the National Ignition Facility (NIF),17–19 and proposed magnetized
parametric laser amplification schemes7 necessitate a re-examining of
the impact of a magnetic field on them, which is usually neglected.
This is not unexplored territory. For instance, prior work studied how
an external axial B field affects Raman backscattering in a hot, inho-
mogeneous plasma,20 and the decay of circularly polarized electromag-
netic waves in cold, homogeneous plasma.21 Recently, excellent
theoretical work on a warm-fluid model for magnetized LPI has been
done by Shi.22 Winjum et al.23 have studied SRS in a magnetized
plasma with a particle-in-cell code in conditions relevant to indirect-
drive ICF. This work focuses on how the B field affects large-
amplitude Langmuir waves, which can nonlinearly trap resonant elec-
trons and modify the Landau damping. Our work ignores nonlinearity
and damping, both of which are important in real systems.

Besides modifying existing processes, a background B field gives
rise to new waves, one of which is an electromagnetic “whistler” wave
which has x � xce, the electron cyclotron frequency. Thus, a plethora
of new parametric processes involving this wave can occur, including
one which we call “stimulated whistler scattering” (SWS), in which the
pump light wave decays to an electrostatic Langmuir wave and a whis-
tler wave. Parametric processes involving whistlers have been known
for some time. For instance, a collection of new instabilities (mostly
involving whistler waves) which include purely growing, modulational
and beat-wave instabilities in hot, inhomogeneous plasmas has been
explored by Forslund et al.24 The decay of a high-frequency whistler
wave into a Bernstein wave and a low-frequency whistler wave in hot,

inhomogeneous plasmas has also been investigated.25 Additionally,
parametric decays involving three whistler waves in cold, homoge-
neous plasmas have been studied.26 In magnetized fusion, parametric
interactions of large-amplitude RF waves launched by external anten-
nas, for plasma heating and current drive, have been explored since
the 1970s.27

This paper has two main objectives. First, to present the theory of
magnetized LPI in a didactic and self-contained way, for a simple
enough situation where that is feasible. Namely, we consider all wave-
vectors parallel to the background B field and use warm-fluid theory
with multiple ion species. We work with left and right circularly polar-
ized waves, a natural choice for this magnetic field configuration,
which allows for Faraday rotation. We obtain the uncoupled, linear
waves and a parametric dispersion relation [Eq. (67)], meaning one
where the pump light wave is included in the equilibrium, in the
spirit of Drake et al.28 (unmagnetized) and Manheimer and Ott29

(magnetized—but details lacking). This allows the calculation of
growth rates and the inclusion of strong coupling, where the
parametric coupling significantly alters the daughter waves from
their linear, uncoupled dispersion relations. It also includes both fre-
quency up- and down-shifted scattered light waves. This paper is, to
our knowledge, the only published, detailed derivation of such a mag-
netized parametric dispersion relation.

The paper’s second goal is to study magnetized LPI in HED-
relevant conditions (e.g., for NIF and MagLIF). We do this via the
“kinematics” of magnetized three-wave interactions, based on phase-
matching of linear, uncoupled waves. This approach treats the
parametric coupling as small and is, thus, a special case of prior work,
especially the weakly coupled, warm-fluid model developed by Shi.22

We quantify the effect of the imposed magnetic field on SRS and SBS
spectra, which is small for fields that have been achieved on existing
facilities. Analytic approximate expressions for the shifts in scattered
wavelength due to the B field are also given. We then consider SWS,
which, to the best of our knowledge, is the first such explicit analysis in
the HED and LPI contexts. We believe the HED and LPI communities
will find this self-contained theory and simple application to present
experiments useful.

The rest of the paper is organized as follows. In Sec. II, we use the
warm-fluid equations to derive the parametric dispersion relation.
These are then linearized and decomposed in Fourier modes. Only res-
onant terms satisfying phase-matching are retained. In Sec. III, the
resulting free-wave dispersion relations in a magnetized and unmagne-
tized plasma are discussed, along with the Faraday rotation of
light-wave polarization. Section IV studies the impact of the external
magnetic field on stimulated Raman and Brillouin scattering in typical
HED plasmas. Stimulated whistler scattering is also explored. Section V
concludes and discusses future prospects.

II. PARAMETRIC DISPERSION RELATIONS
FOR MAGNETIZED PLASMA WAVES

This section develops a parametric dispersion relation, meaning
one where the pump is included in the equilibrium. This approach is
in the spirit of the paper by Drake et al.28 for kinetic, unmagnetized
plasma waves and also for magnetized waves.29 Subsequent kinetic
work was done which extended the Drake approach to include a back-
ground B field.30,31 While our approach does not contain new results
compared to the latter, we believe it is useful to work through the
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details explicitly—especially in a form familiar to the unmagnetized
LPI community. The upshot of the lengthy math is Eq. (67), which the
reader should understand in physical terms before delving into the
details of this section. Our goal is expressions for the amplitude-
independent Ds (which give linear dispersion relations) and Ds (which
give parametric coupling).

A. Governing equations

The subscript s will be used to denote species, with mass ms and
charge qs ¼ Zse (e> 0 the positron charge). The subscript j will denote
the wave or mode. We start with the 3D, non-relativistic
Vlasov–Maxwell system with no collisions and assume spatial varia-
tion only in the z direction. Hence, all vectors directed along ẑ are
longitudinal, and all vectors which lie in the x–y plane are transverse.
An experimental configuration for which these assumptions hold is
shown in Fig. 1. We further assume that the distribution function for
species s, fs (particles per dz � d3w, where ~w denotes velocity, and we
have integrated over x and y) can be written in a separable form:
fsðt; z;~wÞ ¼ fs?ðt; z;~w?ÞFsðt; z;wzÞ. fs? allows for transverse electro-
magnetic waves and is normed such that

Ð
fs?d2w? ¼ 1. Fs is the 1D

distribution (particles per dz � dwz). Standard manipulations lead to
the following 1D Vlasov–Maxwell system:

@tFs þ wz@zFs ¼ �
qs
ms
ðEz þ ð~vs �~BÞzÞ@wz Fs; (4)

ð@t þ vsz@zÞ~vs? ¼
qs
ms
ð~E? þ ð~vs �~BÞ?Þ; (5)

ns ¼
ð
Fsdwz; ~vs? ¼

ð
fs?~w?d

2w?;

vsz ¼ n�1s

ð
Fswzdwz;

(6)

Bz ¼ Beq ¼ const; (7)

@t~B? ¼ @zðEy;�ExÞ; (8)

@t~E? ¼ c2@zð�By;BxÞ �
e
e0

X
s

Zsns~vs?; (9)

@tEz ¼ �
e
e0

X
s

Zsnsvsz: (10)

Beq> 0 and the subscript eq indicates a nonzero, zeroth order back-
ground term. Poisson’s equation is not listed since the inclusion of
Ampère’s law and charge continuity render it redundant. It is possible

to satisfy Maxwell’s equations [Eqs. (8)–(10)] by writing ~E and ~B in
terms of scalar and vector potentials, / and ~A: ~E ¼ � ~r/� @~A

@t and
~B ¼ ~r �~A þ Beqẑ . We choose the Weyl gauge in which / ¼ 0 and
~A ¼ ~A? þ Az~z . Faraday’s law is then automatic, and the remaining
Maxwell’s equations become

@2t Az ¼
e
e0

X
s

Zsnsvsz; (11)

ð@2t � c2@2z Þ~A? ¼
e
e0

X
s

Zsns~vs?: (12)

We arrive at fluid equations by taking moments
Ð
wp
zdwz of the equa-

tion for Fs, for p ¼ 0, 1, and 2

@tns þ @zðnsvszÞ ¼ 0; (13)

@tðnsvszÞ þ @z nsv
2
sz þ

Ps
ms

� �
¼ qsns

ms
ðEz þ ð~vs �~BÞzÞ; (14)

ð@t þ vsz@zÞPs ¼ �3Ps@zvsz � 2@zQs (15)

with pressure Ps � ms
Ð
Fsðwz � vszÞ2dwz and heat flux Qs � ðms=2Þ

�
Ð
Fsðwz � vszÞ3dwz . Note that the pressure is the zz component of

the 3D pressure tensor, not the scalar, isotropic pressure. We can close
the fluid-moment system by replacing the pressure equation with a
polytrope equation of state, where Ks is a constant

Ps ¼ nsTs ¼ Ksn
cs
s ; (16)

@zPs ¼ Kscsn
cs�1
s @zns ¼ csTs@zns: (17)

Common choices for linearized dynamics are isothermal ðcs ¼ 1Þ and
adiabatic ðcs ¼ 3Þ, which follows from setting Qs ¼ 0 in the pressure
equation. Let us recap the complete fluid-Maxwell system, with the

substitutions ~a ¼ e
me
~A (units of speed), x2

ps ¼
q2s nseq
e0ms

; xcs ¼ j qsms
Beqj;

ls ¼ ms
meZs

, and ss ¼ �1; 1 for electrons and ions, respectively,

@2t az �
X
s

x2
psls

ns
nseq

vsz ¼ 0; (18)

ð@2t � c2@2z Þ~a? ¼
X
s

x2
psls

ns
nseq

~vs?; (19)

@tvsz þ l�1s @taz þ vsz@zvsz þ cs
Ts

msns
@zns ¼ l�1s ~vs? � @z~a? ; (20)

@t~vs? þ l�1s @t~a? � ssxcs~vs? � ẑ ¼ �l�1s vsz@z~a? � vsz@z~vs? ; (21)

@tns þ @zðnsvszÞ ¼ 0: (22)

Terms that can give rise to parametric couplings of interest have been
moved to the RHS. These involve at least one e/m wave, which will
become the pump, and one e/m or e/s wave, which will become one of
the daughters. All other terms have been moved to the LHS, namely,
those that are purely linear or contain second-order terms not of inter-
est. It is clear that the longitudinal dynamics are unaffected by Beq in
the absence of the parametric coupling since we chose~kjjBeqẑ .

B. Linearization: Physical space

We consider parametric processes involving the decay of a fixed,
finite-amplitude, electromagnetic pump to an electromagnetic and an
electrostatic daughter wave, denoted by subscripts 0, 1, and 2, respec-
tively. The daughter waves are assumed to be much lower in amplitude

FIG. 1. Geometry of the experimental setup considered throughout the paper. The
pump frequency, x0, is set by the laser. An external magnetic field, Beqẑ , is
imposed parallel to the propagation direction of the laser, k̂ 0. The laser is incident
from vacuum on a plasma with density, ne, which varies with z. The wave vector is,
therefore, also z dependent.
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than the pump. We write the velocity and vector potential pertaining
to each wave as an infinite sum of terms of increasing order in ampli-
tude. We neglect all terms of second order or higher in the pump
amplitude (such as the ponderomotive term, which scales as a20),
retaining only terms which are strictly linear in wave amplitudes or
involve the product of one pump and one daughter amplitude. The
plasma density is approximated by the sum of a static, uniform equi-
librium term, nseq and a perturbation induced by the electrostatic
wave, ns2. We assume that no background flows exist in the plasma
(vseq¼ 0), no external electric fields are imposed upon it (aeq¼ 0), and
quasi-neutrality holds (

P
s qsnseq ¼ 0). We write

~a? ¼~a0? þ~a1?; (23)

az ¼ a2; (24)

~vs? ¼~vs0? þ~vs1?; (25)

vsz ¼ vs2; (26)

nsz ¼ nseq þ ns2; (27)

where~aj; ~vj, and ns2 are functions of t, z. Since we are only interested
in second-order terms which give rise to the parametric coupling, we
can linearize equation (17)

@zPs
ns
¼ cs

Tseq

nseq
@zns2: (28)

Substituting these results and Eqs. (23)–(27) into Eqs. (18)–(22) and
keeping only coupling terms of interest, we obtain, for waves 1 and 2,

@2t a2 �
X
s

x2
pslsvs2 ¼ 0; (29)

ð@2t � c2@2z Þ~a1 �
X
s

x2
psls~vs1 ¼

X
s

x2
psls

ns2
nseq

~vs0; (30)

@tvs2 þ l�1s @ta2 þ cs
v2Ts
nseq

@zns2 ¼ l�1s ~vs0 � @z~a1 þ~vs1 � @z~a0ð Þ; (31)

@t~vs1 þ l�1s @t~a1 � ssxcs~vs1 � ẑ ¼ �vs2@zð~vs0 þ l�1s ~a0Þ ; (32)

@tns2 þ nseq@zvs2 ¼ 0; (33)

where v2Ts ¼
Teqs

ms
. The �vsz@zvsz term in Eq. (20) has been neglected

because it is second order in the daughter wave amplitude. Wave 0 sat-
isfies the same equations as wave 1 [i.e., Eqs. (30) and (32)] without
the coupling terms (RHS¼ 0). For the daughter waves 1 and 2, we
now have 2sþ 1 scalar and sþ 1 vector equations for 2sþ 1 scalar
ðns2; vs2, and a2Þ and sþ 1 vector ð~vs1 and~a1Þ unknowns, with all vec-
tors in the 2D transverse (xy) plane. Our plan is to move to Fourier
space, retain only linear and parametric-coupling terms, and arrive at
a closed system just involving the as.

C. Fourier decompositions

If the variable X is used to represent the electric field, electron
density, or wave velocity, then X can be written as a Fourier decompo-
sition, in which j denotes the wave (0,1,2)

Xjðt;~rÞ ¼
1
2
Xfje

iwj þ c:c: (34)

Subscript f denotes the Fourier amplitude, phase wj ¼ ð~kj �~r � xjtÞ
� kjz � xjt, and c.c. is an abbreviation of complex conjugate. Since all

successive amplitudes will be Fourier amplitudes, the subscript f will,
henceforth, be neglected. Wave 1 can be written in terms of two e/m
waves, with either an up-shifted or a down-shifted frequency vs wave
0, denoted by subscripts þ and �, respectively. The phase-matching
conditions are, hence,

w� ¼ w0 � w�2; wþ ¼ w0 þ w2: (35)

Growth due to the parametric coupling means the daughter-wave kj and
xj can be complex. It is assumed that the pump amplitude is fixed (no
damping or pump depletion); hence, k0 and x0 are real, and w�0 ¼ w0.
We choose our definitions of w6, so they and w2 have the same imagi-
nary part, i.e., the same parametric growth rate. We also choose all fre-
quencies to have a positive real part: the companion field for Re[x� < 0
follows from the condition that the physical field is real. Although one
can mix positive and negative frequency waves, we find the analysis sim-
pler with all Re[x� > 0. Especially with magnetized waves, the discus-
sion of circular polarization for Re[x� < 0 can become confusing.

1. Plasma waves in Fourier space

We shall eliminate ns2 and~vs2 in favor of the as. Substituting Eq.
(34) into Eqs. (29) and (33), we obtain

a2 þ
1
x2

2

X
s

x2
pslsvs2 ¼ 0 (36)

and

ns2 ¼ nseq
k2
x2

vs2; (37)

respectively. Repeating for Eq. (31) gives

�x2

2
vs2 �

l�1s

2
x2a2 þ

csv
2
Ts

2neqs
k2ns2

 !
þ c:c: ¼ l�1s

4
PCs2 þ c:c:;

(38)

where the parametric coupling terms are contained in PCs2 (units of
frequency� speed), and

PCs2 ¼� ie�iw2

X
þ;�

Res2 ð~vs0eiw0Þ � ðik6~a6e
iw6Þ

�
þð~vs0eiw0Þ � ð�ik�6~a

�
6e
�iw�6Þ þ ð~vs6eiw6Þ � ðik0~a0eiw0Þ

þ ð~vs6eiw6Þ � ð�ik�0~a
�
0e
�iw�0 Þ þ c:c:

i
; (39)

where Res2 denotes terms which are resonant with mode 2. Using Eq.
(37) to substitute for ns2

�x2ðvs2 þ l�1s a2Þ þ cs
k22v

2
Ts

x2
vs2 ¼

l�1s

2
PCs2 : (40)

Rearranging for vs2,

vs2 ¼ �
x2Ps
lsx2

ps
ðx2a2 þ PCs2Þ ; (41)

Ps ¼
x2

ps

x2
2 � csk

2
2v

2
Ts

: (42)

Substituting this result into Eq. (36), we obtain
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1�
X
s

Ps
� �

a2 ¼
1

2x2

X
s

PsPCs2 : (43)

2. EM waves in Fourier space

Writing Eq. (32) in terms of Fourier modes, we obtain

1
2

X
þ;�
�ix6~vs6 � il�1s x6~a6 � ssxcs~vs6 � ẑ
� �

eiw6 þ c:c:

¼ � 1
4

�
ik0vs2~vs0e

iwþ þ ik0v
�
s2~vs0e

iw�

þ l�1s ðik0vs2~a0eiwþ þ ik0~a0v
�
s2e

iw�Þ
�
þ c:c: (44)

Let Zyþ;Zy� denote Zy and Z�y , respectively, where Z denotes an
amplitude, frequency, or wavelength, and y denotes a subscript con-
taining the mode and plasma species (if applicable) of Z. This allows
us to write generic equations for the þ and � waves. Selecting only
resonant terms, we obtain

x6ð~vs6 þ l�1s ~a6Þ � issxcs~vs6 � ẑ ¼ k0
2
vs26ð~vs0 þ l�1s ~a0Þ : (45)

Finally, Eq. (30), once written in terms of Fourier modes, becomes

1
2

X
þ;�

ð�x2
6 þ c2k26Þ~a6 �

X
s

x2
psls~v6

� �
eiw6 þ c:c:

¼
X
s

x2
ps

ls

4nseq
ð~vs0ns2eiwþ þ~vs0n�s2eiw�Þ þ c:c: (46)

Keeping terms resonant with w6 and eliminating ns2 gives

ð�x2
6 þ k26c

2Þ~a6 �
X
s

x2
psls~vs6 ¼

1
2
k26

x26

X
s

x2
pslsvs26~vs0: (47)

Using Eq. (41) to eliminate vs2 from Eqs. (45) and (47), keeping only
terms up to second order, we are left with the following equations,
where we restate the plasma-wave equation for convenience

~vs6 þ l�1s ~a6 � ibs6~vs6 � ẑ ¼ �Ks6a26ð~vs0 þ l�1s ~a0Þ ; (48)

ð�x2
6þ k26c

2Þ~a6�
X
s

x2
psls~vs6 ¼�

k26x26

2

X
s

Ps6a26~vs0; (49)

ð1�
X
s

PsÞa2 ¼
1

2x2

X
s

PsPCs2: (50)

Ks6 ¼ k0x2
26Ps6

2lsx6x2
ps
; bs6 ¼ ss

xcs
x6
, and Ps6 ¼

x2
ps

x2
26
�csk

2
26

v2Ts
. x2þ ¼ x2;

x2� ¼ x�2, and similarly for k26. The equations for wave 0 are equiva-
lent to those for the 6 waves, neglecting second-order terms.

At this point, the remaining task is to solve for~vs6 in terms of
~a6, a2, and wave 0 quantities. We will finally arrive at a 5� 5 system
for~aþ; ~a

�
�, and a2, which includes both the linear waves and paramet-

ric coupling to wave 0. For magnetized waves, this is most easily done
in a rotating coordinate system, where R and L circularly polarized
waves are the linear light waves.

D. Left–right co-ordinate system

It is convenient when dealing with Fourier amplitudes to formu-
late vectors in terms of right- and left-polarized co-ordinates, which
are defined in terms of Cartesian coordinates as follows:

R̂ ¼ 1ffiffiffi
2
p ðx̂ þ iŷÞ;

L̂ ¼ 1ffiffiffi
2
p ðx̂ � iŷÞ:

(51)

In condensed notation,

r̂ ¼ 1ffiffiffi
2
p ðx̂ þ irŷÞ; (52)

where r ¼ þ1;�1 for the right- and left-polarized basis vectors,
respectively. We define the dot product such that ~a �~b ¼

P
i aib

�
i .

Thus, dot products do not commute:~a �~b ¼ ð~b �~aÞ�. This normaliza-
tion ensures r̂ � r̂ ¼ 1. Using this convention, any vector can be
re-written in terms of right- and left-polarized unit vectors and ampli-
tudes. Consider, for example, the physical velocity vector ~v?, where
we explicitly indicate Fourier amplitudes with subscript f

~v? ¼ ðx̂vfx þ ŷvfyÞeiw þ c:c:

¼ 1ffiffiffi
2
p ððR̂ þ L̂Þvfx þ iðL̂ � R̂ÞvfyÞeiw þ c:c:

¼ 1ffiffiffi
2
p ðL̂ðvfx þ ivfyÞ þ R̂ðvfx � ivfyÞÞeiw þ c:c:

¼ 1ffiffiffi
2
p ðvfLL̂ þ vfRR̂Þeiw þ c:c:

¼ eiw
X

r

vf rr̂ þ c:c: (53)

Note that ~v � r̂ ¼ 2�1=2eiwðvx � irvyÞ ¼ eiwvfr þ c:c. As an explicit
example, for an R wave with vfR ¼ V real and vfL ¼ 0,
~v? ¼ 21=2Vðcosw;�sinwÞ. At fixed z, ~v? rotates clockwise as time
increases when looking toward �ẑ , which is opposite to ~Beq. We,
therefore, follow the convention used by Stix,32 in which circular
polarization is defined relative to~Beq and not~k.

We use the result given in the last line of Eq. (53) to produce the
definition of a dot product of two vectors in Fourier space in this coor-
dinate system. Consider the vectors~v and~a

~v:~a ¼ eiðwi�w�j ÞðvfRia�fRj þ vfLia
�
fLjÞ þ c:c:; (54)

where the subscripts i, j are the wave indices.

E. EM waves in left–right coordinates

Taking r̂� [Eqs. (48) and (49)], we obtain

ð1þ rbs6Þvs6r þ l�1s a6r ¼ �Ks6 l�1s a0r þ vs0r
� �

a26 ; (55)

ðx2
6 � k26c

2Þa6r þ
X
s

x2
pslsvs6r ¼

k26x26

2

X
s

Ps6a26vs0r; (56)

respectively, where a6r �~a6 � r̂. The definitions of vs6r; vs0r, and
a0r are analogous to that of a6r. We now have uncoupled equations
for ða6r; vs6rÞ which is the advantage of using rotating coordinates.
This is unlike the original x and y coordinates, which are coupled due
to the~v �~B force. For the pump wave, we have these equations with
subscript 6! 0 and set the RHS to 0. Thus,

vs0r ¼ �
1

lsð1þ rbs0Þ
a0r: (57)
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Rearranging Eq. (55) to obtain an expression for vs6r

ð1þ rbs6Þvs6r ¼ �l�1s a6r �
rKs6bs0

lsð1þ rbs0Þ
a06ra26: (58)

Substituting this into Eq. (56) and moving parametric coupling terms
to the right-hand side, we obtain

D6ra6r ¼ �D6r2a0ra26; (59)

where

D6r ¼ x2
6 � k26c

2 �
P

s

x2
ps

1þ rbs6
;

D6r2 ¼
x26

2

X
s

Ps6
ls

1
1þ rbs0

k26 � k0
x26

x6

rbs0

1þ rbs6

� �
:

(60)

This has the desired form, where wave amplitudes are written only in
terms of as, not vs. For no B field, all bs are zero, and the parametric
coupling coefficient D6r2 / k26, the usual unmagnetized result. To
explain the notation, DþR gives the linear dispersion relation for the
scattered upshifted R wave, and DþR2 is the parametric coupling coef-
ficient for that wave and wave 2 (the plasma wave). Please see the para-
metric dispersion relation equation (67).

F. Plasma waves in left–right coordinates

Writing the PCs2 term in Eq. (50) in terms of right and left circu-
larly polarized waves, we obtain

PCs2 ¼� k��ðvs0Ra��R þ vs0La
�
�LÞ þ k0ðv�s�Ra0R þ v�s�La0LÞ

þ kþðv�s0RaþR þ v�s0LaþLÞ � k0ðvsþRa�0R þ vsþLa
�
0LÞ: (61)

Substituting for~vs0 using Eq. (57), and~vs6 using Eq. (58)

�lsPCs2 ¼ a0Ra
�
�R

k0
1þ b�s�

� k��
1þ bs0

� �

þ a0La
�
�L

k0
1� b�s�

� k��
1� bs0

� �

þ a�0RaþR �
k0

1þ bsþ
þ kþ
1þ bs0

� �

þ a�0LaþL �
k0

1� bsþ
þ kþ
1� bs0

� �
: (62)

Equation (50) can now be written in a more condensed form

D2a2 ¼ �
X

r

D2þra
�
0raþr þ D2�ra0ra

�
�r

� �
; (63)

D2 ¼ 1�
X
s

Ps; (64)

D2þr ¼
1

2x2

X
s

Ps
ls

kþ
1þ rbs0

� k0
1þ rbsþ

� �
; (65)

D2�r ¼
1

2x2

X
s

Ps
ls
� k��
1þ rbs0

þ k0
1þ rb�s�

� �
: (66)

We now have a plasma–wave relation involving just as.

G. Parametric dispersion relation

Equations (59) [really four equations: Eq. (59) and its complex
conjugate for r ¼ R; L] and (63) form a system of five linear equa-
tions, which can be summarized in matrix form

DþR 0 0 0 DþR2a0R

0 D��R 0 0 D��R2a
�
0R

0 0 DþL 0 DþL2a0L

0 0 0 D��L D��L2a
�
0L

D2þRa�0R D2�Ra0R D2þLa�0L D2�La0L D2

2
66666664

3
77777775

aþR

a�R�

aþL

a�L�

a2

2
66666664

3
77777775
¼ 0:

(67)

The structure of this matrix matches our physical understanding of
plasma–wave dispersion relations: the diagonal terms are independent
of a and give rise to linear waves. The off diagonal terms are all pro-
portional to a0 and represent the parametric coupling between the e/m
and e/s (plasma) daughter waves. Nonzero solutions exist when the
determinant is zero, which gives the parametric dispersion relation
including the pump light wave in the equilibrium. This is analogous to
Drake et al.,28 but generalized to include a background magnetic field,
and specialized to our 1D geometry and fluid instead of a kinetic plas-
ma–wave response. It should also be a special case of the magnetized
results in Manheimer and Ott,29 which we find difficult to penetrate.
One could also derive parametric growth rates from Eq. (67) and com-
pare to those of Shi.22 We defer this to future work since we do not use
growth rates in the subsequent application to HED conditions.

The parametric dispersion relation couples a pump and scattered
e/m wave of the same R or L polarization. Consider the case where
there is only one pump wave: i.e., either a0R ¼ 0 or a0L ¼ 0. Taking
a0R ¼ 0 for definiteness, waves a�R and a��R decouple from the disper-
sion relation, leaving the following dispersion matrix:

DþL 0 DþL2a0L

0 D��L D��L2a
�
0L

D2þLa�0L D2�La0L D2

2
664

3
775

aþL

a��L
a2

2
664

3
775 ¼ 0: (68)

Setting the determinant to 0 gives

DþLD
�
�LD2 ¼ ja0Lj2ðDþLD2�LD

�
�L2 þ D��LD2þLDþL2Þ: (69)

a0L ¼ 0 then gives the three linear dispersion relations for the
upshifted L, downshifted L, and plasma waves: DþL ¼ 0; D�L ¼ 0, or
D2 ¼ 0. a0L 6¼ 0 couples the linear waves and gives parametric
interaction.

III. IMPACT OF EXTERNAL B FIELD ON FREE WAVES

This section considers the linear or free waves, with a0 ¼ 0. Let
a1 be either aþ or a� in Eq. (67) to obtain the free-wave dispersion
relation

D�1L 0 0

0 D�1R 0

0 0 D2

2
664

3
775

a�1L
a�1R
a2

2
664

3
775 ¼ 0: (70)

~a 6¼ 0 solutions exist if the determinant of this matrix equals 0. This
gives rise to the following dispersion relations, for a single ion species.
For the e/m waves, with a2 ¼ 0, we have D1LD1R ¼ 0, which gives

x2
1 ¼ k21c

2 þ
x2

pe

1� r
xce

x1

þ
x2

pi

1þ r
xci

x1

: (71)
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For e/s waves, with a1L ¼ a1R ¼ 0, we have D2 ¼ 0 and

x2
2 ¼

x2
pe

1� ce
k22v

2
Te

x2
2

þ
x2

pi

1� ci
k22v

2
Ti

x2
2

: (72)

Note that the background B field has no effect at all on the e/s waves,
for our geometry of~kjj~Beq.

A. Waves in an unmagnetized plasma

By setting xce ¼ 0, we recover the unmagnetized dispersion rela-
tion for electromagnetic waves from Eq. (71)

x2
1 ¼ c2k21 þ x2

pe þ x2
pi: (73)

The ion contribution is usually negligible. Equation (72) gives the elec-
trostatic waves, with the conventional approximations, like neglecting
ions for electron plasma waves (EPWs), being highly accurate.
Namely, we find the EPW for ce ¼ 3

x2
2 ¼ x2

pe þ 3v2Tek
2
2 (74)

and the ion acoustic wave (IAW) for ce ¼ 1; ci ¼ 3

x2
2 ¼

ZiTe

mi

1

1þ ðk2kDeÞ2
þ 3Ti

ZiTe

 !
k22 (75)

with kDe � vTe=xpe. We must retain finite Te for an IAW to exist.

B. Waves with magnetic field

The dispersion relation for free electromagnetic waves in a mag-
netized plasma is given in Eq. (71). As is usual in LPI literature, we
view this as giving x as a function of real k. This gives a fourth-order
polynomial for x with four real solutions, each of which corresponds
to an e/m wave

x4 � rðxce � xciÞx3 � ðc2k2 þ xcexci þ x2
pe þ x2

piÞx2

þrðxce � xciÞc2k2xþ xcexcic
2k2 ¼ 0: (76)

Note one can solve this trivially in closed form for k given x. In the
following analysis, but not in the numerical solutions, we assume
Zime=mi 	 1, so we can drop x2

pi and set xce � xci ! xce. In order
of descending frequency, these waves are the right- and left-polarized
light waves, the whistler wave, and the ion cyclotron wave (ICW). In
addition to these waves, two electrostatic waves are obtained by solving
Eq. (72): the EPW and the IAW.

Let us consider the high-frequency e/m waves, the light and whis-
tler waves, where ion motion can be neglected: xci ! 0. In this case,
Eq. (76) becomes (removing one x¼ 0 root)

x3 � rxcex
2 � ðc2k2 þ x2

peÞxþ rxcec
2k2 ¼ 0: (77)

We assume xpe 
 xce, which is typical in the HED regime. For light
waves, we consider Eq. (77) for x
 xce. For k¼ 0, we find

xðk ¼ 0Þ � xpe þ
r
2

xce: (78)

For all k, we write x as xðBeq ¼ 0Þ � ðc2k2 þ x2
peÞ

1=2 plus a
correction

x � xðBeq ¼ 0Þ þ r
2

x2
pe

xðBeq ¼ 0Þ2
xce: (79)

1. Whistler wave

We can also solve Eq. (77) for the whistler wave, which has
x � xce. We call this full set of roots for x the whistler though some
authors only use this term for the small k domain and “electron cyclo-
tron wave” when x is near xce. We derive expressions for this wave by
considering two limits: first, for k! 0 (but still large enough that we
can neglect ion motion, discussed below), we obtain

x � r
c2k2

x2
pe

xce: (80)

We restrict interest to x > 0 waves, which for the whistler requires
the R wave (r¼ 1)

x � c2k2

x2
pe

xce; r ¼ 1: (81)

Second, for ck
 xpe, we obtain

x � xce 1�
x2

pe

c2k2

� �
; r ¼ 1: (82)

For x near xce, the whistler group velocity dx=dk approaches zero.
Since this is the relevant wave propagation speed for three-wave inter-
actions, such a localized whistler wavepacket would propagate very
slowly. This impacts how stimulated whistler scattering evolves and
how to practically realize the process in experiments or simulations.

The full numerical solutions of the dispersion relations for the
whistler wave and the right- and left-polarized light waves are shown
in Fig. 2(a). Note that here and throughout the rest of the paper, kDe is
used to normalize k, as is customary for stimulated scattering. For
large kkDe, the whistler wave tends to x ¼ xce, shown in Fig. 2(a) as a
dashed black line.

2. Ion cyclotron wave

We now consider the ICW which requires the retention of terms
involving ion motion. As with the whistler wave, we consider two
regimes. For k! 0, we seek solutions with x / k, which gives

x � vAk; r ¼ �1 or þ 1; (83)

where the Alfv�en velocity, vA ¼ c xci
xpi
¼ B=ðql0Þ1=2. This solution

applies for both values of r, meaning there is both an R wave (the
whistler, including ion motion) and an L wave (the ICW). To see
which is which, we need to take the opposite limit ck
 xpe, where
we obtain two solutions with x independent of k: x ¼ xce for r ¼ 1
(the right-polarized whistler), and x ¼ xci for r ¼ �1 (the left-
polarized ICW). Including the next correction term for the ICW gives

x � xci 1�
x2

pi

c2k2

� �
; r ¼ 1: (84)

Figure 2(a) is re-plotted in Fig. 2(b) for x	 xpe to show the IAW
and ICW clearly. The ICW tends to x ¼ xci, denoted by a dashed
black line. The numerical and approximate analytic solutions to the
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ICW dispersion relation are shown in Fig. 2(b) in blue and dark blue,
respectively. As can be seen from Eq. (83), at low kkDe, the ICW
approaches the Alfv�en frequency, which is represented by a dashed
cyan line in Fig. 2(b). For large values of kkDe, the ICW frequency
tends to xci, marked by a dashed black line. The parameters used to
plot the dispersion relations shown in Figs. 2(a) and 2(b) are given in

Table I. A plasma comprising helium ions and electrons was
considered.

C. Faraday rotation

Three unique waves exist in an unmagnetized plasma, of which
two are electrostatic (the electron plasma wave, EPW and the ion
acoustic wave, IAW) and one is electromagnetic (light wave, with two
degenerate polarizations). If the electromagnetic wave is linearly polar-
ized, it can be written as the sum of two circularly polarized waves of
equal amplitude and opposite handedness (R and L waves). If an exter-
nal B field, ~Beq is applied, the R and L waves experience different indi-
ces of refraction and propagate with differing phase velocities.
Consequently, the overall polarization of the electromagnetic wave,
found by summing the R and L waves, rotates as the electromagnetic
wave propagates through the plasma. This is the well-known Faraday
effect, which is briefly derived below.

An expression for the wavenumber of the electromagnetic wave
can be obtained by rearranging Eq. (71),

kr ¼
x
c

1�
x2

pe

x2 1� r xce
x

� �
 !1

2

: (85)

Two first-order Taylor expansions of Eq. (85), assuming x
 xce and
x
 xpe yield

kr � K � rDK; (86)

where

K ¼ x
c

1�
x2

pe

2x2

� �
; DK ¼

x2
pe

2x2

xce

c
: (87)

Consider a linearly polarized plane electromagnetic wave. We can
write the physical electric field ~E ¼ Re½~EF � as the sum of the electric
fields of two circularly polarized waves with opposite handedness

~EF ¼ eðR̂eiwR þ L̂eiwLÞ; wR;L � kR;Lz � xt: (88)

Writing this in Cartesian co-ordinates,

21=2

e
~EF ¼ x̂ðeiwL þ eiwRÞ þ iŷðeiwL � eiwRÞ: (89)

Assuming e is real,

~E ¼ Eðcos/;�sin/Þ;
E ¼ j21=2e cos ð1=2ÞðkL þ kRÞz � xt½ �j;

/ ¼ 1
2
ðkL � kRÞz ¼ DKz:

(90)

FIG. 2. Numerical solutions to the free-wave dispersion relations in a magnetized
plasma, for the conditions in Table I. Red: right-polarized e/m, blue: left-polarized
e/m, purple: unmagnetized e/m, and black: electrostatic. (a) High-frequency
waves, in decreasing order: e/m light, electron plasma, and whistler. The black
dashed line lies at xce

xpe
. (b) Low-frequency waves: electrostatic ion acoustic wave,

right-polarized whistler, and left-polarized ion cyclotron waves. Also plotted are
the analytic approximations to the ion cyclotron wave for ck 
 xpe (dark blue)
[Eq. (84)], which tends to xci

xpe
(dashed black line), and k ! 0, which yields the

Alfv�en frequency (dashed cyan line), given in Eq. (83).

TABLE I. Parameters used to plot dispersion relations.

Quantity Value

Z 2
A 4
Te 2 keV
Ti 1 keV
xce
xpe

0.423
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At a fixed z,~E always lies along the same line in the xy plane, with its
exact position varying in time. As z varies, the angle / this line makes
with respect to the x axis increases at the rate

@/
@z
¼ DK ¼ 16:8

ne
ncrit

BeqðTÞðdeg=mmÞ: (91)

The final formula is in practical units. We have introduced the critical
density ncrit � ðe0me=e2Þx2, which is the usual definition for the
unmagnetized plasma. When discussing LPI, ncrit is for the pump
wave x0. Significant Faraday rotation is, thus, possible in current ICF
platforms with modest B fields. For instance, with ne=ncrit ¼ 0:1 and
Beq ¼ 10T, we obtain @z/ ¼ 16:8�= mm. This could be used to diag-
nose ne (a common technique when feasible) and could affect LPI pro-
cesses such as crossed-beam energy transfer.33–35

IV. IMPACT OF EXTERNAL B FIELD
ON THE PARAMETRIC COUPLING

We apply the above theory to magnetized LPI in HED relevant
conditions, all for~kjj ~Beq jjẑ . We consider how the imposed field modi-
fies SRS and SBS as well as SWS which only occurs in a background
field. Recall~ki ¼ kiẑ , and we choose k0 > 0. k1 and k2 can have either
sign. Let ci ¼ sign(ki) for i¼ 1, 2. For all three parametric processes we
discuss, “forward scatter” refers to the case where the scattered e/m
wave propagates in the same direction as the pump ðc1 ¼ þ1Þ, and
“backward scatter” to the opposite case ðc1 ¼ �1Þ. To satisfy kmatch-
ing, we cannot have both c1 ¼ �1 and c2 ¼ �1. For SRS and SBS, c2
must equalþ1, but for SWS, c2 ¼ �1 is possible.

We do not consider growth rates but focus instead on the kine-
matics of three-wave interactions, through the phase-matching condi-
tions among free waves. We study the scattered e/m wave frequency
x1 since this is what escapes the plasma and is measured experimen-
tally. As discussed in Sec. IIIC, ~Beq causes the R and L waves to propa-
gate with different phase velocities. Therefore, a laser or other external
source that imposes a linearly polarized light wave of frequency x0

couples to an R and L wave in a magnetized plasma. For stimulated
scattering, we are mostly interested in down-shifted scattered waves
for which x1 < x0, which have the same polarization as the pump: an
R or L pump couples to a down-shifted R or L scattered wave, respec-
tively; hence, r1 ¼ r0 which we, sometimes, denote as r. We discuss
SRS and SBS, which can be driven by either an R or L pump, and
SWS, which can only be driven by an R pump (since the whistler wave
is an R wave). Table II summarizes the processes we study.

In order to derive a dispersion relation for x1 in terms of
known inputs, we begin with the identity k2 ¼ k2. We use k match-
ing to write k2 ¼ k0 � k1 on the left side, and the plasma–wave dis-
persion relation of interest to rewrite the right side in terms of x2.
We then use the e/m dispersion relation to write k1 in terms of x1

and use x matching to write x2 ¼ x0 � x1. For SRS and SWS, this

yields k0 � k1 ¼ ðx2
2 � x2

peÞ
1=2=vTe31=2. The same method is applied

for SBS, where k2 is written in terms of x2 using the simple
IAW dispersion relation, x2 ¼ csjk2j, for an approximate analysis
(the numerical roots use the full e/s dispersion relation). That is,
c2s ¼ ðZiTe=miÞ ð1þ 3Ti=ZiTeÞ. The resulting dispersion relations
can be summarized as follows:

MY �ð1� X2
peð1� r0XceÞ�1Þ1=2

� c1X1ð1� X�21 X2
peð1� r1Xce=X1Þ�1Þ1=2 � PY ¼ 0; (92)

where Y is either RW, for SRS and SWS, or B, for SBS. For SRS

and SWS, PY ¼ PRW ¼ c2V�1e ðð1� X1Þ2 � X2
peÞ

1=2, where Ve

� vTe31=2=c. For SBS, PY ¼ PB ¼ V�1s ð1� X1Þ, with Vs � cs=c. This
is usually very small, with 10�3 a typical magnitude. XX � xX=x0,
where X denotes any angular frequency subscript in Eq. (92). The fre-
quency of scattered light which satisfies phase matching is given by the
roots of Eq. (92), which can be found by plotting MY vs X1. This is
illustrated for SRS and SWS in Fig. 3, and for SBS in Fig. 4, for the
parameters given in Table I and ne=ncrit ¼ 0:15.

The dispersion relations given in Eq. (92) are plotted as a func-
tion of x1=x0 and ne=ncrit for scattering geometries ðc1; c2Þ
¼ ð�1; 1Þ; ð1; 1Þ; ð1;�1Þ, in Figs. 5–7, respectively. The two

TABLE II. Summary of parametric processes we study. L, R refer to left-, right-polarized e/m waves.

Process Pump e/m wave Scattered e/m wave Plasma wave Geometries (c1, c2) x1 range ne=ncrit range

SRS R,L R,L EPW (1,1) (�1, 1) >xpe <1=4
SBS R,L R,L IAW (1,1) (�1, 1) � x0 � xpi <1
SWS R R-whistler EPW (1,�1) (�1, 1) <xce � ð1� xce=x0Þ2 for Te ¼ 0

FIG. 3. The dispersion relation for SRS and SWS, MRW is plotted vs x1=x0. Its
roots MRW ¼ 0 are indicted by magenta points. This is for backscatter
(c1 ¼ �1; c2 ¼ 1) and the parameters of Table I plus ne=ncrit ¼ 0:15. SWS is
possible for a right-polarized pump (red) but cannot occur when the pump is left
polarized (blue).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 042113 (2022); doi: 10.1063/5.0079547 29, 042113-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


dispersion relations, MRW and MB, have been overplotted. To distin-
guish between them, MRW has been cross-hatched, while MB has not.
The color scale for M applies to both MRW and MB. The regions of
Figs. 5–7 where M is not real are colored gray. The regions of the plot

where MRW;B 6¼ 0 serve only to illustrate the root-finding method
employed: to ensure we have correctly identified roots, we check that
MRW;B has changed the sign. The roots of M have been computed
numerically and are plotted as black contours. These contours indicate
whether SRS, SBS, or SWS can occur for the geometry and plasma
conditions considered and illustrate the relationship between the

FIG. 4. The dispersion relation for SBS, MB is plotted vs x1=x0, for the same
parameters as Fig. 3. Its roots MB ¼ 0 are indicted by magenta points. The roots of
MB occur at similar, but not identical x1=x0 for a left- and right-polarized pump.

FIG. 5. The dispersion relations for SWS and SRS ðMRW Þ and SBS ðMBÞ vs elec-
tron density and scattered light frequency. Te ¼ 4 keV, Ti ¼ 2 keV,
xce=xpe ¼ 0:423, and we consider backscatter ðc1 ¼ �1; c2 ¼ 1Þ. MRW is distin-
guished by cross-hatching. The roots of M are plotted as black contours which
have been labeled appropriately. Three other curves have been plotted:
ne=ncrit ¼ 0:25, the maximum density at which SRS occurs, x1 ¼ xce, the maxi-
mum SWS frequency, and ne=ncrit  ð1� xce=x0Þ2, the minimum density at
which SWS can occur in a cold plasma. Note that MRW adheres to only the first two
of these approximate analytic limits.

FIG. 6. As Fig. 5, but for forward scatter ðc1 ¼ c2 ¼ 1Þ. Only SRS can occur for
this geometry. While SBS is kinematically possible, the ion wave has k2;x2 ¼ 0,
and SBS has 0 growth rate. Thus, the solution plotted is spurious. For this geome-
try, SWS is kinematically disallowed.

FIG. 7. As Fig. 5, but for c1 ¼ 1 and c2 ¼ �1. For this geometry, phase matching
is only satisfied for SWS, and unphysical SBS as in Fig. 6. As in Fig. 5, MRW ¼ 0
is only satisfied for densities above the minimum normalized electron density in a
cold plasma, ne=ncrit  ð1� xce=x0Þ2, which is plotted in purple.
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normalized plasma density and scattered EMW frequency for each of
these processes. The contours which correspond to a given parametric
process are appropriately labeled.

In Figs. 5 and 6, a sharp decrease can be seen in the frequency of
SRS scattered light with increasing plasma density. Also in Figs. 5 and
7, the frequency of SWS scattered light rises with electron density
before reaching a maximum, and falling. It is often useful to obtain
limits in parameter space beyond which phase matching cannot occur.
For example, in an unmagnetized plasma, SRS is only possible for
ne=ncrit < 0:25. The region of parameter space in which SWS can
occur is also restricted, as x1 � xce. Using the same method as for
SRS, the following inequality is obtained for the normalized electron
densities at which SWS can occur in a cold plasma

ne
ncrit
 ð1� xce=x0Þ2: (93)

These three limits are shown in Figs. 5–7 in cyan, magenta, and purple,
respectively. Note that the contours for SRS and SWS always lie within
ne=ncrit < 0:25 and x1 � xce, respectively, as expected. SWS does not
respect Eq. (93), as discussed further below.

A. Stimulated Raman scattering: SRS

The dispersion relation for SRS is given by Eq. (92), where
c2 ¼ 1. For a cold plasma with Ve ¼ 0, we find X2 ¼ Xp always, so
X1 ¼ 1� Xp. This is true with or without a background field Beq.
Thus, any effect of Beq on X1 is “doubly small,” in that it also relies on
thermal effects. For no background field Xce ¼ 0, we obtain the usual
solutions, which for Ve 	 1 and Xp 	 1 are X1 � 1� Xp � ðXp=2Þ
V2
e for c1 ¼ 1 (forward scatter), and X1 � 1� Xp � ð2=XpÞV2

e for
c1 ¼ �1 (backscatter).

Including a weak background field, we write X1 � X1U þ dX1

where X1U is the solution for Xce ¼ 0: M½X1U ;Xce ¼ 0� ¼ 0. We
have M½X1U þ dX1;Xce� � M½X1U ; 0� þ dX1ð@M=@X1Þ þ Xce@M=
@Xce¼0, which gives dX1�aXce with a¼�ð@M=@XceÞ=ð@M=@X1Þ.

All partials are evaluated at X1 ¼ X1U and Xce ¼ 0. One can find a
formula for a, but it is unilluminating. We quote the result in the limit
that Ve 	 1 and Xp 	 1

a � c1 2=X2
p þ 1=Xp þ 2

	 
1�c1
2

r0V
2
e X

3
p: (94)

The full numerical solution of MRW [see Eq. (92)] is plotted in Figs. 8
and 9 for the plasma conditions given in Table I and the first row of
Table III. The frequencies, wave vectors, and, if applicable, the polar-
izations of the e/m and e/s waves at which phase-matching conditions
are met are illustrated by parallelograms. Specifically, Figs. 8 and 9 cor-
respond to forward and back-SRS, respectively.

The shift in wavelength of SRS light due to the presence of the
external magnetic field, Dk1 ¼ k1 � k1ðxce ¼ 0Þ, is given by

Dk1
k0
¼ x0

1
x1
� 1

x1ðxce ¼ 0Þ

� �
: (95)

Substituting from Eq. (85), and treating temperature and magnetic
field as small perturbations in X1 as detailed above, we derive the fol-
lowing expression for Dk1 to first order in Xce and X2

pe

Dk1
k0
� � dX1

X2
1U

(96)

or, equivalently,

Dk1ðnmÞ � �c1k20ðlm2Þ 5:48� 10�4

X2
1U

TeðkeVÞ ne
ncrit

� �3=2

�BðTÞ 2
ncrit
ne
þ

ffiffiffiffiffiffiffiffi
ncrit
ne

r
þ 2

 !1�c1
2

r0 (97)

in practical units. Under the conditions given in Table I, for ne=ncrit
¼ 0:15 and B¼ 100 T for SRS backscattered light from a left-polarized
pump wave, the analytic approximation yields Dk1 ¼ �0:041 nm,

FIG. 8. Phase-matching parallelograms for forward-SRS light for plasma conditions given in Table I, with ne=ncrit ¼ 0:15. The right- and left-polarized e/m waves are plotted
in red and blue, respectively, while the unmagnetized e/m wave and the electrostatic EPW are shown in purple and black, respectively. The phase-matching parallelograms
are color-coded according to the polarization of the pump wave. The pump frequency x0 is fixed in all cases, which gives slightly different k0s from the relevant dispersion rela-
tions. The scattered e/m frequencies x1 are nearly but not exactly the same, though this is very hard to see visually. The pump and scattered e/m waves have the same
handedness.
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compared to the full numerical solution, which gives Dk1 ¼ �0:046 nm.
Typically, in NIF-type experiments, the wavelength of back-SRS light is in
the range of 500–600nm, with a spectral width of 5–10nm due to damp-
ing and gradients. Given that this is the case, detecting sub-Angstrom shifts
in this spectrum presents a significant challenge. This first-order approxi-
mation of Dk1 agrees reasonably closely with the full numerical computa-
tion of Dk1, which is plotted as a function of xce=xpe for Te ¼ 2keV,
4keV, and ne=ncrit ¼ 0:05, 0.15 in Figs. 10(a) and 10(b), for forward and
back-SRS light, respectively. Similarly, the first order approximation and
full numerical solution for Dk1 is shown as a function of Te for forward
and back SRS in Figs. 11(a) and 11(b), respectively, for ne=ncrit ¼ 0:05
and xce=xpe ¼ 0:1. The effect of electron density and temperature
becomes particularly significant for forward and backward-SRS light
from a right-polarized pump as xce ! xpe, as in this limit,
Dk1 !1;�1, respectively.

B. Stimulated Brillouin scattering: SBS

The phase-matching relation for SBS, MB ¼ 0 is derived in
Sec. IV, and given in Eq. (92). A phase-matching diagram is shown in

Fig. 12 for the same conditions as Fig. 8. Exact forward SBS (c1 ¼ 1) is
not considered since in our strictly 1D geometry it does not occur.MB

¼ 0 has a spurious root for k2 ¼ x2 ¼ 0, which connects to near-
forward scatter for small but nonzero angle between~k0 and~k1. The
SBS growth rate is zero for k2 ¼ 0, so we discuss only backscatter
(c1 ¼ �1; c2 ¼ 1). For Xce ¼ 0, the exact solution is

X1U ¼
1� 2g0Vs þ V2

s

1� V2
s

� 1� 2g0Vs (98)

with g0 � ð1� X2
peÞ

1=2. The approximate form for Vs 	 1 is typically
quite accurate. The correction for a weak B field and to leading order
in V2

s is

dX1 ¼ r0X
2
peVsXce 1þ Vsð Þ: (99)

For simplicity, we set the final factor to 1 below. As with SRS, the cor-
rection is doubly small since it scales with the product of Vs / T1=2

e
and Xce. The scattered wavelength shift dk1 � k1 � k1½Xce ¼ 0�, eval-
uated at X1U ¼ 1, is

dk1
k0
� �r0X

2
peVsXce 1þ Vsð Þ: (100)

In practical units,

dk1ðAng:Þ � �9:67� 10�4r0
ne
ncrit

BðTÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZiTeðkeVÞ

Ai
1þ 3TiðkeVÞ

ZiTeðkeVÞ

� �s
k20ðlm2Þ: (101)

This is an extremely small value for ICF conditions. For the parame-
ters shown in Table III, with k0 ¼ 351 nm, ne=ncrit ¼ 0:15, B¼ 100T,

FIG. 9. Phase-matching parallelograms for backward-SRS light: otherwise same as Fig. 8.

TABLE III. Electron densities and magnetic field strengths which correspond to the
normalized parameters considered throughout this paper, for typical NIF and CO2

laser wavelengths. xce
xpe
¼ 0:423 in all cases.

Laser wavelength (lm) ne=ncrit ne (cm�3) Beq (T)

0.351 (NIF) 0.15 1:36� 1021 5000
0.351 0.01 9:05� 1019 1290
10.6 (CO2) 0.15 1:49� 1018 166
10.6 0.01 9:92� 1016 42.7
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and a right-polarized pump, the analytic approximation gives dk1
� �2:37 pm, whereas the full numerical solution gives dk1 � �2:41
pm. The variation of Dk1 with xce=xcrit and Te is shown in Figs. 13
and 14, respectively.

C. Stimulated whistler scattering: SWS

We now discuss SWS, which only occurs with a background
magnetic field. It resembles SRS, except the scattered e/m wave is a
low-frequency whistler (x1 < xce). For a cold plasma, this imposes a
minimum density of ne=ncrit  ð1� xce=x0Þ2 to satisfy frequency

matching, as opposed to a maximum of ne=ncrit < 1=4 for SRS.
Forward (c1 ¼ þ1; c2 ¼ �1) and backward (c1 ¼ �1; c2 ¼ þ1) SWS
are both kinematically allowed though forward SWS can only occur
for a plasma wave propagating counter to the pump: c2 ¼ �1. The
phase-matching conditionMRW for SWS, given in Eq. (92), is identical
to that of SRS except that c2 ¼ 61. Figures 15 and 16 show SWS
phase-matching diagrams for the allowed geometries and for a range
of ne=ncrit ; xce=xpe and Te.

The relationship between x1=x0; k2kDe andxce=xpe is shown in
Figs. 17 and 18 for ðc1; c2Þ ¼ ð�1; 1Þ; ð1;�1Þ, respectively, for a range
of plasma densities and temperatures. The frequency of the scattered

FIG. 10. Dk1, the difference in wavelength of forward [10(a)] and backward [10(b)]
SRS light in a magnetized vs an unmagnetized plasma, for Te ¼ 2:0 keV, 4.0 keV,
ne=ncrit ¼ 0:05, 0.15 and k0 ¼ 351 nm. For [forward, backward] SRS, Dk1 is
½> 0; < 0� for a right-polarized pump and ½< 0; > 0� for a left-polarized pump.

FIG. 11. Dk1 of forward [11(a)] and backward [11(b)] SRS light, plotted for
xce=xpe ¼ 0:1; ne

ncrit
¼ 0:05, and k0 ¼ 351 nm. Full numerical solutions are

unbroken lines, first-order analytic approximations are dashed lines.
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EMW increases with increasing magnetic field strength, before saturat-
ing. The rate of increase with xce=xpe and the values of x1=x0 and
xce=xpe at which saturation occurs vary with plasma density and tem-
perature. Increasing Te decreases the x1=x0 at which the trend satu-
rates, while increasing ne=ncrit causes the observed trend to saturate at

lower x1=x0 and xce=xpe. k2kDe is plotted to indicate the magnitude
of Landau damping, which is expected to significantly reduce SWS
growth for k2kDe � 0:5. In the opposite limit, the SWS growth rate
approaches zero as k2kDe ! 0.

The wavelength of SWS scattered light is

k1ðlmÞ ¼
xce

x1

10 709:7
BðTÞ : (102)

FIG. 12. Phase-matching parallelograms for backward-SBS, otherwise same as Fig. 8. Electrostatic IAW shown in black.

FIG. 13. dk1, the difference in wavelength of backward-SBS light in a magnetized
vs an unmagnetized plasma, for three combinations of electron temperatures and
densities Te ¼ 2:0 keV, 4.0 keV, and ne=ncrit ¼ 0:05, 0.15, where the ratio of elec-
tron and ion temperature is kept constant: Te=Ti ¼ 2. The laser wavelength, k0 ¼
351 nm. The full numerical solutions and their analytic counterparts are plotted as
unbroken and dashed lines, respectively. Dk1½< 0; > 0� for a right- or left-
polarized pump, respectively.

FIG. 14. Dk1 of backwards SBS light, plotted for xce=xpe ¼ 0:423; ne
ncrit
¼ 0:15

and k0 ¼ 351 nm. Full numerical solutions are unbroken lines, analytic approxima-
tions as dashed lines.
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For the bottom rows of Table IV, ne=ncrit ¼ 0:15; xce=xpe ¼ 0:423,
and x1 � xce. For a pump wavelength of 0:351lm, we have
B¼ 5000 T and k1 � 2:14lm. This is in the near infrared, where
detectors exist but are not commonly fielded on ICF lasers. More real-
istic B fields will be much lower, and k1 much longer.

In order for SWS scattered light to be detected, it must first leave
the plasma and propagate to a detector. Given the long wavelength of
SWS scattered light, there is a possibility that changing plasma condi-
tions experienced by the wave as it propagates through the plasma

may cause it to become evanescent. Consider Eq. (77). Rearranging for
k, we obtain

c2k2 ¼ x2 �
x2

pe

1� r
xce

x

: (103)

We see that for x2 >
x2

pe

1�rxce
x
, k is real and the wave can propagate. If

the reverse is true, k is imaginary and the wave is evanescent. xpe and
xce vary in space and generally go to zero far from the target. If B tends
to zero too rapidly, the dispersion relation tends to the unmagnetized
one, c2k2 ¼ x2 � x2

pe. In this case, if ne exceeds the critical density of

FIG. 15. Phase-matching parallelogram for forward SWS: c1 ¼ 1; c2 ¼ �1, where
xce=xpe ¼ 0:423 and Ti ¼ Te=2.

FIG. 16. Frequency (unbroken lines) of forward-SWS scattered light ðc1 ¼ 1;
c2 ¼ �1Þ, and Langmuir wave k2kDe (dashed lines) for various plasma densities,
ne=ncrit ¼ 0:6; 0:15, and species temperatures, Te ¼ 4; 0:5 keV, Ti ¼ Te=2 keV.
k2kDe is plotted to indicate the strength of Landau damping.

FIG. 17. Phase-matching parallelogram for backward SWS (c1 ¼ �1; c2 ¼ 1), for
a range of electron densities and temperatures, where xce=xpe ¼ 0:423 and
Ti ¼ Te=2.

FIG. 18. Frequency backward SWS light with c2 ¼ 1, for ne=ncrit ¼ 0:6; 0:15 and
Te ¼ 4; 0:5 keV.
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the SWS scattered light wave, the wave will be reflected and will not
reach the detector. However, if the magnetic field strength decreases
slowly enough and/or the electron density decreases quickly enough,
the wave will escape the plasma. Then, xpe ¼ 0 and ck ¼ x, that is, it
becomes a vacuum light wave and can propagate to the detector.

We now discuss the variation of SWS with plasma parameters.
For finite Te, Langmuir-wave frequency increases, an effect compara-
ble to an increase in electron density. This enables SWS to occur at
densities lower than the minimum density in a cold plasma, given in
Eq. (93). We see this in Fig. 16, where the lowest density shown,
ne=ncrit ¼ 0:15, corresponds to the highest pump frequency and a
very high Langmuir-wave frequency, x2=xpe > 2. This requires a
large k2kDe > 1, which entails considerable Landau damping and,
therefore, a low SWS growth rate. Although growth rates are beyond
the scope of this paper, other work establishes that they generally are
/ kp2 (for some power p) when k2kDe is small and decrease with
increasing Landau damping for large k2kDe. This means there is an
effective low-density cut-off, below which SWS is kinematically
allowed but strongly damped. In the opposite limit, as ne approaches
ncrit (such as ne=ncrit ¼ 0:6 in Figs. 16 and 17 and Table IV), k2
becomes small, and Landau damping is negligible; however, the
growth rate of SWS also tends to 0. There is, thus, an intermediate
range of ne in which the growth rate is optimal, and k2kDe is moderate.
The case where ne=ncrit ¼ 0:4 and Te ¼ 2 keV shown in Figs. 16 and
15 and Table IV typifies this regime.

V. CONCLUSION

We presented a warm-fluid theory for magnetized LPI, for the
simple geometry of all wavevectors parallel to a uniform, background
field. The field affects the electromagnetic linear waves in a plasma
though the electrostatic waves are unaffected for our geometry.
Specifically, the right and left circular polarized e/m waves become
non-degenerate and form the natural basis, as opposed to linearly
polarized waves. This allows for Faraday rotation, which could be sig-
nificant on existing ICF laser facilities for magnetic fields imposable
with current technology. The field introduces two new e/m waves, the
ion cyclotron and whistler wave, which have no analogues in an
unmagnetized plasma.

We found a parametric dispersion relation to first order in the
parametric coupling, Eq. (67), analogous to the classic 1974 work of

Drake et al.28 We then focused on the kinematics of phase matching
for three-wave interactions. Since the right and left circular polarized
light waves have different k vectors for the same frequency, the back-
ground field introduces a small shift in the scattered SRS and SBS fre-
quencies compared to the unmagnetized case. The sign of the shift
depends on the pump polarization and forward vs backward scatter.
The shift’s magnitude increases with magnetic field, electron tempera-
ture, and plasma density. The wavelength shifts are � 1 Ang. for SRS,
and � 0:1 Ang. for SBS, for plasma andmagnetic field conditions cur-
rently accessible on lasers like NIF. Such small shifts would be
extremely challenging to detect.

The new waves supported by the background B field also allow
for new parametric processes, such as SWS, which we studied in detail.
In this process, a light wave decays to a whistler wave and Langmuir
wave. This is analogous to Raman scattering, with the whistler replac-
ing the scattered light wave. We expect SWS scattered light to be infra-
red, with wavelength 1–100lm for fields of 10 kT–100T. The whistler
wavelength was found to decrease with increasing magnetic field
strength and increase with increasing plasma density and temperature.
In a cold plasma (Te ¼ 0), there is a minimum density for SWS to sat-
isfy phase matching, namely, ne=ncrit > ð1� xce=x0Þ2. Finite Te
allows us to circumvent this limit, at the price of high Langmuir-wave
kkDe, and thus, strong Landau damping. We expect an analysis of
SWS growth rates, including Landau damping, to show maximum
growth for moderate kkDe.

Much work remains to be done on magnetized LPI. This paper
does not discuss parametric growth rates though they are contained in
our parametric dispersion relation (without damping or kinetics), and
others have studied them in the limit of weak coupling.22 It is impor-
tant to know when the two circularly polarized light waves generated
by a single linearly polarized laser (incident from vacuum) should be
treated as independent pumps, with half the intensity of (and, thus,
lower growth rates than) the original laser. This likely occurs when the
wavevector spread exceeds an effective bandwidth set by damping,
inhomogeneity, or parametric coupling.

Two major limitations to our model are the restriction to wave-
vectors parallel to the background field, and the lack of kinetic effects
especially in the plasma waves. Propagation at an angle to the B field
opens up many rich possibilities, including waves of mixed e/m and e/s
character, and B field effects on the e/s waves. In the case of perpendic-
ular propagation, the e/s waves become Bernstein waves. Adding kinet-
ics is essential to understanding parametric growth in many systems of
practical interest, where collisionless (Landau) damping is dominant.
This also raises the so-called Bernstein-Landau paradox, since
Bernstein waves are na€ıvely undamped for any field strength.

If these issues can be resolved, we envisage magnetized LPI model-
ing tools analogous to existing ones for unmagnetized LPI. This was one
of the main initial motivations for this work. For instance, linear kinetic
coupling in the convective steady state and strong damping limit has
been a workhorse in ICF for many years, such as for Raman and
Brillouin backscatter36 and crossed-beam energy transfer.35 A magne-
tized generalization of this needs to handle propagation at arbitrary
angles to the B field as well as arbitrary field strength. Among other
things, itmust correctly recover the unmagnetized limit. A suitable linear,
kinetic, magnetized dielectric function will be one of the key enablers.

The dispersion relation presented in this work does not account
for plasma inhomogeneities, which are highly significant for NIF and

TABLE IV. Frequencies of stimulated whistler scattered light for several ne=ncrit and
Te (ion temperature, Ti ¼ Te=2), and their corresponding values of the normalized
EPW wavenumber. For all cases, xce=xpe ¼ 0:423. The rightmost column is the
minimum ne=ncrit for SWS to occur in a cold plasma.

c1 c2 ne=ncrit Te (keV) x1=x0 x1=xce k2kDe ð1� xce
x0
Þ2

�1 1 0.6 0.5 0.2212 0.6752 0.0592 0.452
1 �1 0.6 0.5 0.224 0.6836 0.0336 0.452
�1 1 0.6 4 0.1995 0.609 0.1502 0.452
1 �1 0.6 4 0.2163 0.6601 0.0883 0.452
�1 1 0.4 2 0.2557 0.9557 0.3582 0.5365
1 �1 0.4 2 0.2615 0.9776 0.3479 0.5365
�1 1 0.15 4 0.1623 0.9904 1.1074 0.6992
1 �1 0.15 4 0.1631 0.9955 1.106 0.6992
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MAGLIF campaigns. To include these effects, an approach similar to
the one utilized for DEPLETE36 could be employed. This treatment
assumes that the length scale of the inhomogeneity is greater than the
wavelength of the pump and scattered waves, which allows the scat-
tered and plasma waves to be treated as collections of monoenergetic
carrier waves with slowly varying amplitudes in time and space.
Frequency-matching conditions, and, hence, the gain rate for SRS and
SBS, vary with the plasma density, as do the refracted paths of the scat-
tered light, which are computed using ray-tracing. The spectrum of
scattered light is obtained by integrating the spatially varying gain rate
over the inhomogeneous density profile along the paths of the
refracted rays.
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