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Three-dimensional (3D) simulations of electron beams propagating in high-energy-density plasmas using the
quasistatic Particle-in-Cell (PIC) code QuickPIC demonstrate a significant increase in stopping power when
beam electrons mutually interact via their wakes. Each beam electron excites a plasma wave wake of wavelength
~2mc/wp., Where c is the speed of light and w,, is the background plasma frequency. We show that a discrete
collection of electrons undergoes a beam-plasma-like instability caused by mutual particle-wake interactions
that causes electrons to bunch in the beam, even for beam densities 7, for which fluid theory breaks down. This
bunching enhances the beam’s stopping power, which we call “correlated stopping,” and the effect increases
with the “correlation number” N, = nh(c/wpe)3. For example, a beam of monoenergetic 9.7 MeV electrons
with N, = 1/8, in a cold background plasma with n, = 10%® cm™ (450 g cm~* DT), has a stopping power of
2.28 &£ 0.04 times the single-electron value, which increases to 1220 =+ 5 for N, = 64. The beam also experiences
transverse filamentation, which eventually limits the stopping enhancement.
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I. INTRODUCTION

Energetic particle stopping power is a critical issue in
many plasma physics contexts, including self-heating by fu-
sion products, magnetic fusion devices, space plasmas, cancer
therapy, and high-energy-density (HED) systems. We focus
on the last, where energetic (nonthermal) charged particles
are of interest for several reasons. Laser-plasma interactions,
such as stimulated Raman scattering and two-plasmon decay,
produce energetic electrons that alter energy coupling in an
inertial fusion system. Ultraintense short-pulse lasers can also
produce energetic ions and relativistic electrons. An interest-
ing application is the fast ignition (FI) approach to inertial
fusion [1], in which a beam of energetic electrons (ideally with
kinetic energy ~1-3 MeV) deposits energy into a compressed
target’s core, beginning the ignition process. This application
motivates our choice of parameters. The important role of
electron wakes in this work is also relevant to plasma-based
particle accelerator research.

Most calculations of electron beam transport for MeV and
higher particle energies in HED plasmas use a single-electron
stopping formula based on quantum electrodynamics (QED)
and a collective dielectric response or wake (discussed in
Appendix A) [2-6]:

We use CGS units throughout. Energy loss per distance trav-
eled s is to background electrons, and —e, m,, n., and w,, =
(4mn,e? / m,)'/? are the electron charge, mass, number density,
and plasma frequency respectively, and g = c/w,. is the
collisionless skin depth. We have omitted small nonlogarith-
mic terms and radiative loss, the latter of which is small in
hydrogen for electron energies < 100 MeV, though for high-Z
materials like gold it is significant for ~10MeV [2,7]. The
beam electron has charge e, (distinguished from —e to show
correlation effects), mass my, speed v, and 8 = v/c, Lorentz
factor y = [1 — B2]~'/2, kinetic energy E = myc’(y — 1),
and de Broglie wavelength Aq, = h/m,.v. Equation (1) applies
for E > T,, with T, the background electron temperature,

and A9™ assumes my, = m,, e, = —e. The stopping power in
Eq. (1) scales as ei/m;,, so if N beam electrons act like a
single “macroparticle” with e, = —Ne, m, = Nm,, then their

stopping is o ei/mb o N [8]. This is the basic idea behind
correlated stopping, and requires discrete beam particles—it
would not occur for a smooth beam of “jellium.” Such stop-
ping has also been studied in the field of electron plasma
accelerators in an attempt to design a more compact beam
dump [9].

In this paper, we closely examine how the stopping power
of a collection of particles can be enhanced above the single-

dy ei w;%e par'ticle stopping, Eq. (1), due to “'correlateq stopping,” in
——=——5—>h AT which the beam electrons mutually interact via their plasma

ds mye v wave wakes. An increase in stopping power may increase

AT = [2(y — D] 2 Ssk. 1) the energy deppsited by an electron begm in an FI target

Adb core, thus making the concept more feasible. In contrast to

the “collective stopping” considered by others [10], in which

fluid beam-plasma instabilities lead to an increase in stopping

power, correlated stopping is caused by discrete particle-wake

*+ellis @ minevaluation.com interactions. This can occur when the electron beam density
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np is too low for a fluid description to strictly apply, such
as in a FI target core. Collective stopping has been studied
extensively for ion beam stopping [11] and for static beam
electron configurations [8,12,13]. We present here the first
3D Particle-in-Cell (PIC) simulations of dynamic correlated
electron stopping in HED plasmas. We observe a consistent
increase in stopping power beyond the single-particle result
with increasing “correlation number” N, defined as:

o\3/2
Ny = mp83, = 4.50 x 106@(”—) Aum). ()
c nE
The second practical form is for electron beams produced by
a short-pulse laser of wavelength A with n, the laser critical
density.

II. PIC METHOD

We examine the stopping power for finite-size relativistic
electrons using the PIC method. The standard PIC method
can suffer from numerical Cerenkov radiation as well as
self-forces created by aliasing. Numerical Cerenkov radiation
[14,15], which is a common issue in finite-difference (FD)
electromagnetic PIC codes, is caused by particles moving
faster than light propagates on the mesh. Issues related to
numerical Cerenkov radiation are different than those that
arise from the numerical Cerenkov instability [16]. Aliasing
can also lead to artificial self-fields on the particle, even for
solvers with superluminal light waves or perfect dispersion
solvers. These effects can increase the single-electron stop-
ping power. New solvers developed for FD PIC codes may
mitigate numerical Cerenkov radiation [15,17] and permit
studies of correlated stopping in divergent beams in the future.

To circumvent these issues, we use the quasistatic PIC
code QuickPIC [18,19]. QuickPIC uses coordinates (x, y, § =
ct — z, 8 = z), where z is the direction of beam propagation.
The quasistatic approximation is 9/ds < 9/90&, meaning the
length-scale of variations of the beam or wake with s is much
greater than the wake wavelength; i.e., the beam evolves on a
timescale much slower than it takes a beam particle to pass
a plasma particle. This approximation decouples the wake
calculation from the beam particle push, and allows much
larger time steps than fully electromagnetic codes. QuickPIC
does not include radiative fields, has similarities to the Darwin
approximation, and is not an electrostatic model. QuickPIC
sends a two-dimensional (2D) plasma slice across the box in
the & direction at each s step. We can therefore view & as
the “time” after the box begins passing through a transverse
plasma slice at position s.

The simulation parameters are listed in Table I. They are
relevant to an electron beam propagating through a fully
ionized deuterium-tritium (equal atomic fraction) plasma of
~450 gcm™3, where the background electron number den-
sity n, = 10%® cm™3; typical of the compressed fuel in FI
designs. Under these conditions, if n, is the critical density
n. ~ 1.11 x 10! ecm=3 for 1 um light, then N, = 0.15. For
these conditions, In A9™ = 8.35.

We primarily study monoenergetic beams with N, from
1/8 to 64 and momentum p, = 20m,c (E = 9.7 MeV). The
energy, while larger than the ~1-3MeV in an optimal FI
beam [5,6,20], is chosen to ensure the validity of the qua-

TABLE I. The parameters for the QuickPIC simulations.

T, 10% cm ™3

T, 0eV
Interpolation Linear

Cell width Ay = Ay = Ag = 0.040584
ds 284

41.51584 x [1, 1,2]in [x, y, €]
1084 x [1, 1, 8]
83.0384 x [1,1,2]
4084 x [1,1,8]

Small box eimensions
Small beam dimensions
Large box dimensions
Large beam dimensions

sistatic approximation. We expect the instabilities we observe
in our simulations to evolve faster in beams closer to the
1-3 MeV range due to the lower Lorentz factor.

Two major assumptions we make are using a cold back-
ground plasma (plasma electrons are initialized with zero
initial velocity) and neglecting collisions. Since the stopping
power is independent of 7, for E > T,, we do not expect
our results to vary appreciably with finite 7,. The question of
how T, could affect the plasma wakes is future work, though
a brief discussion is provided in Appendix B, and we note
that the plasma-based accelerator literature has used Green’s
functions for T, = 0 for many years. Finite 7, also leads to a
numerical instability that develops in the particle wake when
a warm plasma is used. The increased temperature will cause
transverse spreading of the wake via diffraction [21] and will
affect the motion of the beam particles via discrete particle
thermal fluctuations.

As for collisions, the background electron-ion collision
frequency for momentum transfer, including Fermi degener-
acy, is v & 7.46 x 107%n,[(n,/2.05 x 10%2)*P/3 4 T3/,
p=172, (n, in ecm™3, T, in eV, v in s™') [6]. When
n, = 10%° cm™3, Wpe ~ 5.64 x 10" rad/s. At T, =0¢eV,
v/wp. ~ 0.27 and neglecting collisions is unrealistic. At 7, =
1 keV, which is typical of the fuel in FI designs at the
time the electron beam starts, v/wp, ~ 0.038 and the col-
lisionless assumption is more feasible. As the fuel heats,
collisions become less important, e.g., at T, = 5keV, v/w,, ~
0.0037. Collisions should generally be less important in
other HED systems at lower electron densities than the
1026 ¢cm—3 we consider. Despite these limitations, our work
with a cold plasma provides significant insight into correlated
stopping.

We set up an electron beam centered transversely in the
box. We simulate two different beam sizes, whose dimensions
and respective box sizes are listed in Table I. Both sizes have
cell width A = 0.040564. There is one background electron
per cell and, for both the beam and plasma, one PIC particle
represents one physical particle, avoiding the enhanced stop-
ping experienced by macroparticles (a PIC particle typically
has a charge and mass of many electrons) [22].

The simulations use a window moving at ¢ in the direc-
tion of beam propagation 2. The transverse boundaries are
conducting with specular reflection for the particles. The 2D
plasma sheet is initialized with the plasma particles in a stable
configuration. Therefore, with a cold plasma, as the sheet
crosses the box, the arrangement of the plasma particles does
not change unless there is a beam particle present.
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FIG. 1. The s evolution of the stopping power enhancement "¢
from Eq. (3) for four values of N,. Each line is an average over
eight QuickPIC runs, and the associated transparent blooming is
the associated uncertainty, which can become thinner than the line
itself as NV, increases. We also plot the minimum physical stopping
enhancement ' from Eq. (4) at the s of maximum ™' The results
with and without mobile plasma ions are mostly indistinguishable.

We perform simulations for four cases:

(1) small, monoenergetic beam; immobile ions

(2) same as (1) but mobile ions of charge +e¢ and mass

1836.15m,
(3) same as (1) but 1 MeV beam temperature in z (cold in
transverse directions)

(4) same as (1) but large beam
All electrons in the monoenergetic beams are initialized with
a momentum p, = 20m.c (E = 9.7 MeV). When the beam
has a temperature in z, the electrons are initialized using
a Maxwell-Jiittner distribution with 7, = 1 MeV centered
around p, = 20m,c. The assumption of no transverse tem-
perature is unrealistic [23]. For each simulation case, we
run with N, = 1/8, 1, 8, and 64 by varying n;, and keeping
n, = 10% c¢cm=3 fixed. For example, when N, = 64, n;, =
4.26 x 102 c¢cm—3. For each N,, we run eight simulations.
For each run, the beam electrons are initially placed on a
cubic lattice of spacing A; = § Nb1 /3 then displaced in each
Cartesian direction by a random distance chosen uniformly
from [—A;/2, A;/2).

III. CORRELATED STOPPING RESULTS

Figure 1 shows the s evolution of the stopping power
enhancement averaged over eight runs for each N, and simula-
tion type. We first find dy /ds|¥C, the stopping of one electron
in a full, N-beam-electron simulation, by averaging over all
beam electrons, up to 16384 000 for N, = 64 in large-beam
simulations, then average the eight results and find the stan-
dard deviation. The stopping enhancement

pic _ dy/dsIy©
= 3y /a5 3)
4 i
where dy /ds|F'C is the stopping power of a lone beam elec-
tron measured in a separate QuickPIC simulation. n*'C rapidly
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FIG. 2. The peak stopping enhancement n*C vs. N, for all four
simulation cases. A curve fit for the large box, case (4), is also
plotted.

moves above unity in all cases and increases with N,, reaching
a dramatic enhancement of ~10° for N, = 64. For ease of
comparison, Fig. 2 plots the peak values of n*'C from Fig. 1
vs. Np, along with that for N, = 1/64 in simulation case (4).
We include a curve fit for case (4): n71¢ =1 + 10.58Nbl'14.

We now estimate the enhancement of the phys-
ical, quantum-mechanical stopping power: 7ni" =
(dy/ds|y")/(dy/ds|{™). The single-particle stopping in
QuickPIC dy/ds|®'C is well below the single-particle
quantum result dy /ds|{", as discussed in Appendix A. Our
simulations therefore do not show how much this “unresolved
stopping,” dy /ds|I" — dy /ds|}', is enhanced by correlation
effects. A likely upper bound is to assume the unresolved
stopping is enhanced by the same factor as the stopping
resolved in the PIC code, or nmha, = n°'C. For a lower bound,
we assume none of the unresolved stopping is enhanced:
dy /ds|y" —dy [ds|NC = dy /ds|" — dy /ds|?'C, or

In APIC
mn = o 7 = D+ 120387 1062 (4)
1

This lower bound still gives significant stopping enhancement,
as shown in Fig. 1 by the discrete symbols.

Figure 1 clearly shows stopping power increasing with
Np. The different simulation cases change the evolution
of the stopping power for each N,. Mobile plasma ions
make the least difference, as results with and without mo-
bile ions are mostly indistinguishable. This small effect is
explained by the relatively small ion density perturbation.
For N, = 64, when s = 1005, at the tail of the beam,
max(én;)/ max(dn,) & 0.025, which is negligible in this con-
text.

In all cases except N, = 1/8, adding a 1 MeV beam
temperature in z causes the stopping power to peak at ap-
proximately the same time as the monoenergetic beam but
at a lower value, then remain below it thereafter. However,
for N, = 1/8, the temperature causes the stopping power to
peak earlier and at a higher level, then drop below that of
the monoenergetic beam. This discrepancy may be a result of
the small number of particles, 1000 when N, = 1/8, and may
disappear with a larger beam.

In the simulations using the large box, the stopping power
reaches a higher peak level than that of monoenergetic beams
in the small box in the cases of N, = 1/8, 1, and 8, and the
stopping power remains above those of the smaller beams
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FIG. 3. Stopping power enhancement for five values of N, using
large beams [case (4)], each averaged over eight runs. The dashed
curves indicate the average over the runs, and the thickness of the
faint solid curve associated with each line is the uncertainty. The faint
solid curves are typically thinner than the dashed lines on the plot,
and are clearer in Fig. 1. The relative uncertainty increases as the
stopping power decreases, illustrating the increasing effect of particle
discreteness with decreasing N,.

thereafter. In all three cases, the stopping power grows more
rapidly early in s than for the smaller monoenergetic beams.
For N, = 64, the large-box stopping power peaks later than
for the small beam and stays above it until s & 8008.. For
N, = 1/8, the stopping enhancement in the large box is still
near 2 at s = 300068y, which may have a significant impact on
applications like FI.

IV. BEAM-PLASMA-LIKE INSTABILITIES
AND SATURATION

The stopping power in all cases initially increases due to
fluidlike instabilities, then peaks and begins to decrease due
to saturation. We say “fluidlike” because, for the parameters
used here, the interparticle spacing can be approximately the
wake wavelength 2 dg, and larger than the wake transverse
radius &, violating the continuum assumption of the fluid
approximation. The uncertainties in Fig. 1 and the variation
between runs in Fig. 3 illustrate the increasing effect of
particle discreteness with decreasing N,. The spreading of a
single-particle wake with increasing &, discussed in Ref. [24],
will also work to invalidate fluid results with decreasing Np,.

Figure 4 illustrates the effect of the fluidlike instabilities on
a small monoenergetic beam with N, = 64 at s = 20058. The
beam contains regions of alternating bunching and spread-
ing in all three dimensions, which is the primary source of
the stopping enhancement. This bunching is caused by the
oscillating electric fields of the particle wakes in the longi-
tudinal direction and the corresponding transverse focusing
fields, as seen in the figure. The longitudinal behavior is
related to the fluid beam-plasma or two-stream instability
[25], and the transverse behavior is related to the transverse
self-modulation instability [26] studied in plasma wakefield
accelerators. As the particles begin to bunch, bunches tend to

40 0.25 m
Beam Propagation_ g
— 02 §
7 )
o s
S 015
£ <
S —
x °1 5
x 7}
0.05 2
CD:
ok o
40f
0.2
‘3307 0.1 M
© mg
2 2/ 000008080000 0 %
5 £
x -0.1 @
10}
-0.2
ol
40f "
-
0.1 g
[ [z}
" * 005 3
2 - 3
o 00 J3J3333335555 > . 2
£ Y 23 0 20 ) 20 20 2
= 3
x -0.05
10} %
01 O
D
ol ‘ ‘ ‘ ‘

50 .4‘0 30 20 10 0
€ [units of §,]

80 70 60

FIG. 4. The beam density in a cut plane through the middle

of the box at y = 20.764 is plotted along with its corresponding

longitudinal and focusing fields for simulation case (1) with N, = 64
at s = 2008

align in the logintudinal direction and merge in the transverse
direction, with the transverse merging limited by beam size or
filamentation. Due to constructive interference, the wakefields
are largest at the tail of the beam, and the process occurs most
rapidly there.

Multidimensional electron beam-plasma instabilities have
recently been studied in the relativistic regime [25], and
an exact kinetic theory for them has been developed us-
ing Maxwell-Jiittner distribution functions [27]. The beam-
plasma and transverse self-modulation instabilities in par-
ticular have been studied extensively in the context of
laser-plasma interactions [28]. Reference [24] has detailed
derivations of them, the former of which is generalizable to
1D fluid streaming instabilities. To briefly summarize, beam
and plasma densities satisfy

82 k2 k2

2 P\ sny, = — s,
2 3 3

as 2 12

32
(8—52 + kf,g> dn, = —kz,0np, )

with subscript j = (b, e) for (beam, background plasma)
quantities, dn; is the density perturbation, k,; = w,;/c, and
(wpb, v») are the beam (plasma frequency, Lorentz factor).
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FIG. 5. The beam density in a cut plane through the middle of the
box at y = 41.5156 is plotted for simulation case (4) with N, = 64
at s = 20084 on the left and s = 40054 on the right.

We Fourier analyze with én; oc exp[i(ke& — kgs)]. Recall that
s and & are akin to time and space, so instability entails
Im[k,] > O for real k¢. The unstable modes satisfy

Im[k] = “L‘Sm Ike| < kpe- 6)
v, (i3 — #z]

A large growth rate occurs for ky = kp, = 1/84, which is

strongly seeded by the wakes of individual beam electrons,

as we observe in Fig. 4.

After an electron bunch forms, the front of the bunch be-
gins to break apart first. This disintegration occurs because the
focusing field in the middle of the beam shifts back, which
occurs as bunches form further forward in the beam, leading
to a defocusing part of the field overlapping with the front
of the bunch. This process saturates the instabilities. While
saturation occurs at different s values for different parts of
the beam, its effect is obvious in the drop in stopping power
after the peaks in Fig. 1. The effect of this saturation process
in beams large enough to filament is unclear. Once a bunch
breaks apart in one filament, its constituent electrons may
move into adjacent filaments, become constituents of new
bunches, and cause the stopping power to grow again.

The filamentation we observe in Fig. 5 is the primary mo-
tivator for the large beam simulations [case (4)]. We observe
such filamentation when N, = 8 and 64. However, we see no
signs of it when N, = 1/8 and 1. We also observe that the
stopping power of the two denser beams peaks later than in
the small-box simulations, which does not occur with the less
dense beams, suggesting that the filamentation is delaying the
growth of the instabilities. The fact that the stopping power for
Np, = 64 peaks with about the same stopping enhancement as
in the smaller box also implies that the filamentation may be
limiting the enhancement. Therefore, filamentation may also
limit the stopping enhancement in applications where larger
beams are used, such as FI.

A second peak in stopping power occurs around s =
130085 for the small monoenergetic beam with N, = 64,
which is caused by four bunches at the same & forming at the
very front of the beam. These bunches are arranged in a square
pattern but rotated relative to the initial square cross section
of the beam. The bunching forces are weakest at the front of
the beam, causing those bunches to form later. This second
peak appears down to N, = 1 in monoenergetic small-beam
simulations with p, = 10m,c, but is caused by a bunch that
forms further back in the beam [24]. These four bunches are

also clear evidence of filamentation, but it does not spread
backwards in the beam because the streaminglike instabilities
have already saturated there and the beam has diffused trans-
versely. We do not see the filamentation limitation in other
small-beam simulations, likely due to the limited transverse
size of the beams. The beam with a 1 MeV temperature does
not have this peak due to the density in the bunch reaching
a lower peak level, ~0.1n, vs. ~0.27n, for the monoener-
getic beam. The beam with 1 MeV temperature also does not
filament.

V. DISCUSSION

The correlated stopping enhancement is more pronounced
at lower electron densities than the extreme 10%° cm™3 con-
sidered here. Short-pulse lasers generally produce electron
beams with n, ~ n. at background densities n, < n.. For the
typical short-pulse laser wavelength A = 1 um, our runs with
N, = 1/8 correspond to n, ~ n, and n, ~ 10°n,.. Typical val-
ues at the absorption region of n, = n, = n, give extremely
high correlation: N, = 4.5 x 10°. The same beam in a solid
density target with n, = 100n, also has very high correlation:
N, = 4500. Collisional stopping may be greatly enhanced in
these conditions due to correlation effects.

A major open question is whether our enhanced stopping
persists over the much larger length and time scales relevant to
practical applications. Past simulations of beams of energetic
electrons incident on uniform dense plasmas show that the
beams penetrate much deeper than the distance traveled in our
simulations. A Monte Carlo simulation of electron transport
including stopping and scattering using a 2D Lagrangian fluid
code shows that a beam of monoenergetic 1.5 MeV electrons
incident on a 300 g cm™ DT plasma at 5 keV has its peak
energy deposition at ~45000 skin depths [5]. Similarly, a
hybrid reduced model for relativistic electron beam transport
based on the Vlasov-Fokker-Planck equation using an electron
beam with mean electron energy of 1.5 MeV incident on a 50
g cm ™3 hydrogen plasma with a temperature of 1 eV has its
peak energy deposition at ~20 000 skin depths [29]. There is
no indication that beam-plasma instabilities were included in
either simulation. Regardless, they indicate the scale of future
simulations that may be required to study the beam transport
problem, including beam-plasma-like instabilities.

Our simulations demonstrate that correlation effects can
significantly enhance electron beam stopping in HED plas-
mas. We observe the stopping power increase to 1200x the
single-electron value for beams with N, = 64. As the beam
density decreases, discrete particle-wake interactions become
more important, and the fluid approximation breaks down. All
our simulations indicate that beam-plasma-like instabilities
lead to an increase in stopping power for N, > 1/8. Ignoring
the coherent interactions of discrete particle wakes and the
related self-focusing, filamentation, and beam-plasma-like in-
stability leaves out important factors in the stopping power.
In particular, because correlated stopping increases with N,
n;3/?, it may make FI feasible at lower core densities than
currently envisaged. Future work should determine the effects
of background temperature, beam divergence, angular scat-
tering, and energy spread, and employ fully electromagnetic
codes.
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APPENDIX A: SINGLE-PARTICLE STOPPING POWER

In this Appendix, we discuss the basic physics of single-
particle stopping power and compare various stopping power
formulas with the stopping power measured in QuickPIC
using various cell widths. We provide the formulas here
for reference, detailed derivations of which can be found in
Ref. [24].

Collisions in a plasma and the stopping power of energetic
particles can be described from two distinct points of view,
which we discuss from a classical approach. In one, Lenard-
Balescu, they are viewed as the interaction of particles through
the plasma response from test charges moving in straight
lines (unperturbed orbits). For energetic electrons, the plasma
response is a plasma wave wake and the stopping power is
determined from the decelerating electric field at the location
of the moving particle. In the other, Landau-Boltzmann, they
are viewed as two-body Coulomb interactions. In both cases,
the resulting stopping power is o In A with A = byax/bmin,
the ratio of a large length b, to a small length by, that
diverges for different reasons. In the first case, by,x is well
defined as a finite screening length, but b, is not defined
and is often chosen to be the scale near where large-angle
scattering events might occur. In the latter, by, is well de-
fined as the distance of closest approach, but by« is not well
defined and is often chosen as the Debye length. Although not
rigorous, the two views are often “summed” together such that
A is the ratio of by, from the wake calculation and b,y;, from
the two-body collision calculation. The same result follows
from the wake approach and cutting off the integral at bp;,.

Combining the wake and two-body views has more merit for
the relativistic stopping power, as it is not clear how to include
quantum effects in the wake calculation.

Although PIC calculations do not rigorously include QED
effects, they can provide a qualitatively correct behavior for
the stopping power and naturally permit a study of mutual—or
correlated—stopping. As noted above, the stopping power
from the wake of a single particle diverges as b, approaches
zero. In most cases, the wake is calculated using the Vlasov
equation and solving for the wake potential as an integral
in wave-number space. In order obtain simple expressions,
the plasma is then assumed to be cold. If the cold limit is
considered first, then the electric field from the wake can be
obtained from cold fluid theory. The plasma-based accelerator
community has used this approach to calculate the Green’s
function response, which can be viewed as the response for
a single charged particle moving near the speed of light in a
cold plasma [24,30]. The axial electric field for the Green’s
function for a point charge ¢ moving in the Z direction is

E.(r,2) = —2q8 3> Ko(r/8q)n(t — z/c) cos[wpe(t — z/0)],
(Al)

where r = (x*> +y*)!/2, K, is the modified Bessel function
of the second kind, and n(x) is the Heaveside step function.
Although this Green’s function diverges at r = 0, the response
from a beam or a finite-size particle does not [22]. If a particle
has a finite size given by a Gaussian charge density p(r, z) =
q/1Q2m)**0 0, lexpl—r?/20} — z2/202], then E. on the par-

ticle becomes
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Qualitatively, physical quantum particles have a finite size that
scales with the de Broglie wavelength A4y, so the wakes pro-
duced by particles of finite size ~Agp are qualitatively similar
to those produced by relativistic electrons. In fact, the expres-
sion in Eq. (1) in the paper can be obtained from evaluating
the wake from classical arguments for a finite-size particle
and setting o, to Ag, in the center of mass frame between
the moving charge and a plasma electron [24]. Furthermore,
the divergence of the Green’s function cannot be correct for a
real classical plasma, so the assumptions of a fluid background
and linearized response must break down. We will address this
issue in a separate publication and below.

We now present several different formulas for relativistic
single-electron stopping power. For convenience, we write the
stopping power as

2 2
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(A3)

L, is often called the “stopping number,” and the d in L,
means “drag.” Other variables are the same as those used
in the paper. As discussed above, L; is approximately the
logarithm of a ratio of two lengths,

b
L;=1In bm?". (A4)

In all our formulas, we set bya = v/wp., Which is the dy-
namic screening length for a moving charge.
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FIG. 6. The stopping power for an electron with p, = 10m,c as
measured in the QuickPIC simulations across various cell widths and
calculated using Bohr, QED, and fluid wake formulas.

The most basic stopping power is that due to a cold
fluid wake. Using the formula for the electric field given in
Eq. (A1), the stopping power is given by

(Sszk e 1 1
Li= —Ez<r —0,1—2= o) = 2Ko(85'r > 03
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8
%1n< sk ) (AS)
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which clearly diverges. However, the formula can be used
to roughly approximate the stopping power of a finite-size
particle in a PIC code with cell width A, in which case

551{
Ly~In{— ).

We compare this formula with single-particle stopping power
measured in QuickPIC in Fig. 6 below.

The stopping power for a relativistic electron taking into
account quantum electrodynamics and a dielectric response is
given by [2]

(AO6)

2y — D1V%m, 9
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R pe 16
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2y? 1
Equation (1) of the paper uses just the first term of Eq. (A7).
Finally, the classical and relativistic (“Bohr”) stopping
power formula uses the classical distance of closest approach
for buin and is given by [31-33]

[(2(y — DI'?m,cv? }

2
€Wy,

L;i=1n { (A8)

We compare A in different models, and discuss the
role of PIC particle size. The physics to bear in mind for
our problem is that the classical by, (distance of closest
approach for binary collisions) is much smaller than the
quantum one (de Broglie wavelength), which, in turn, is
much smaller than the PIC spatial grid sizes (PIC particle
size) that are feasible on current computers. The classical re-

sult for a relativistic electron is A & 884/ bfncin = Ay /e?

with B% = €*/{[2(y — 1)]'/*m,cv}. We estimate the PIC cell
size A imposes bPIC ~ max (b, , A). For our simulations,

TABLE II. The parameters for the QuickPIC stopping power
simulations.

n, 10%° cm—3

T, 0OeV
Interpolation Linear

ds Sk for all cell widths

Box dimensions
Box dells

10.378784[1 x 1 x 1/32]
256 x 256 x 8 for Ay = 0.04058

A = 323006, , so APC = 136A9™/32300 = 0.00422A9™,
or In AP'€ =In A9™ — 5.47. We use the measured value of
this difference in Fig. 6, not this estimate. The quantum,
single-particle stopping is thus larger than that in our PIC
simulations. The question arises of how much of this addi-
tional single-particle stopping would be enhanced in a PIC
simulation with much smaller cell size ~Aqy. In Fig. 6, we
present results for how the stopping power of a single electron
with momentum p, = 10m,c increases as the cell size (parti-
cle size) decreases from our standard value Ag to Ag/32. The
PIC stopping increases from roughly 0.3 to 0.5 of the quantum
stopping. Computer limitations prevent us from carrying out
correlated stopping simulations using the smaller cell sizes.

We compare the stopping power given by the formulas
with the single-particle stopping power measured in QuickPIC
in Fig. 6 for an electron with p, = 10m,.c. The simulation
parameters are listed in Table II. To compare with the stopping
power in Eq. (A6), we vary the cell width in the simulations
between the initial cell width Ag and A(/32 while keeping the
box size constant.

The stopping power given by Eq. (A6) agrees well
with the stopping power measured in QuickPIC until A <
Ap/4, after which it diverges. It is possible that taking into
account the particle shape when calculating the stopping
power would produce better agreement. The saturation of the
stopping power as A/Ay — 0 is caused by test electron pass-
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FIG. 7. The wake from an electron in the quasi-3D version of
OSIRIS at various plasma temperatures. The cell widths in x; and
X, and plasma density are as in the simulations in the paper. The
parameters work out so that there is approximately 1 PIC particle per
real electron. The test charge is a single electron with p = 20m,c in
the x; direction.
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FIG. 8. The lineout of the electric field of the wake in the x;
direction along the x; axis for the same runs as in Fig. 7.

ing between plasma particles. As we move the test charge
closer to a plasma particle transversely, the stopping power
increases. Therefore, a more accurate simulation of stopping
power will require a warm plasma, allowing for random
encounters between the test electron and plasma particles.
However, QuickPIC does not currently allow for these simula-
tions due to the numerical instability mentioned in the paper.
Our simulations in the paper simply use a cell width A =
Ay. As discussed in the paper, we then use the difference be-
tween the single-particle stopping measured in the simulation
(using p, = 20m,c) and the QED stopping to bound the en-

hancement from correlated stopping. Future research should
study the change in beam evolution with cell width, which
may lead to a greater understanding of how single-particle
stopping power is enhanced by correlation effects.

APPENDIX B: THE EFFECT OF PLASMA TEMPERATURE
ON PARTICLE WAKES

To illustrate that the use of cold plasma to study the
stopping power is meaningful we take advantage of recent
progress in simulation capability. Maxwell solvers in standard
PIC codes lead to spurious errors in the fields that surround
relativistic particles. Recently, a detailed analysis of these
showed that they arise due to numerical Cerenkov radiation
and aliasing effects [34]. This analysis also indicated how to
create a field solver that could mitigate these effects and it
was implemented into our code OSIRIS, including a quasi-3D
version [35]. Using these recent improvements, we simulated
the wakes created by a single electron in plasmas with differ-
ent temperatures. We used the subtraction technique [24,36],
in which two identical runs, one with the test charge and
one without, and the same random number generator seed
for the plasma particles, are conducted. The results from the
two simulations are then subtracted, which makes the wake
from the test charge clearly visible even though it is below the
noise level of the simulation. We show these results in Figs. 7
and 8. They clearly show that the field at the location of the
particle is nearly identical for all temperatures in the range
from O to 5 keV. Furthermore, even after four oscillations, the
wakes are clearly present. This indicates that the wake from
one electron will persist and influence the trajectories of those
behind it in warm plasmas in a qualitatively and quantitatively
similar manner as in a cold plasma. These simulations show
that wakes in warm plasmas can also spread.
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