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A three-dimensional laser propagation model for computation of laser-plasma interactions is pre-

sented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for

use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation

scheme are used to estimate the intensity distribution in plasma from geometrical optics rays.

Comparisons with reference solutions show that this approach is well-suited to reproduce realistic

3D intensity field distributions of beams smoothed by phase plates. It is shown that the method

requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using

this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and

steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code

VAMPIRE. Probe beam amplification and laser spot shapes are compared with experimental results

and pF3D paraxial simulations. These results are promising for the efficient and accurate computa-

tion of laser intensity distributions in holhraums, which is of importance for determining the cap-

sule implosion shape and risks of laser-plasma instabilities such as hot electron generation and

backscatter in multi-beam configurations. Published by AIP Publishing.
https://doi.org/10.1063/1.5020385

I. INTRODUCTION

Non-linear Laser Plasma Interaction (LPI) processes are

key to Inertial Confinement Fusion (ICF) experiments.1–5 In

their presence, the hydrodynamics of targets may be greatly

modified: Crossed Beam Energy Transfer (CBET) redistrib-

utes laser energy spatially, Stimulated Raman Scattering

(SRS) and Stimulated Brillouin Scattering (SBS) lead to

losses of laser-target coupling, and SRS and Two Plasmon

Decay (TPD) can generate hot-electrons which change the

target properties with respect to compression and shock

propagation. Despite these prominent effects, few non-linear

LPIs are actually accounted for in radiative hydrodynamic

codes, thus limiting their predictability.

The difficulty in implementing LPIs at the large tempo-

ral and spatial dimensions of fluid codes is essentially a scale

problem. ICF and HED experiments on high power lasers

such as National Ignition Facility (NIF) or OMEGA involve

laser pulses and target dynamics occurring over several tens

of nanoseconds and millimeter or centimeter spatial scales.

However, LPIs entail a wide range of microscopic processes

occurring on sub-ps timescales and sub-lm length-scales.

While the fluid scale is correctly described by radiative-

hydrodynamic models which allow us to study large plasma

volumes on long durations, an accurate description of LPI

should in principle require using kinetic models (particle-in-

cell and Fokker-Planck), which cannot be used at the full

scales of ICF experiments.

The state-of-the-art description of laser propagation on

large scales relies on reduced approaches compatible with

the performances of modern computers. The most common

one is the Ray-Tracing model,6 which describes laser beams

by bundles of needle-like rays following the Geometrical

Optics (GO) propagation laws7 and is characterized by a

power density. In situations where collective effects and non-

linear couplings are unimportant (Ik2 � 5� 1013 W lm2/

cm2), GO-based models are sufficiently precise and compu-

tationally efficient. They describe the laser refraction and

plasma heating due to collisional energy absorption.

Conversely, LPI modeling at higher interaction parameters

requires knowledge of quantities such as the laser intensity

field and the direction of the wavefront, which are not readily

accessible from the GO equations.7 Recent efforts have been

made in describing nonlinear LPIs at hydrodynamic scales,

notably in the case of inline solvers for CBET,3,4,8,9 inline

models for generation of supra-thermal electrons from TPD

and SRS,10 and post-hoc models for energy deposition of

backward propagating SRS light.11

At the core of these state-of-the-art techniques lies the

description of the laser intensity distribution in plasma and,

to a certain extent, the wavefront direction and the wavefield

polarization. Notable approaches to estimate these quantities

rely on either invoking energy conservation laws on a rigid-

scale grid or expanding the ray-based framework by intro-

ducing phase terms that describe ray thicknesses.12 The prin-

cipal drawback of rigid-scale methods is related to the

arbitrary choice of a grid. This is often dictated by hydrody-

namic processes and not the position of laser field gradients.

Additionally, these methods suffer from poor convergence

properties since a sufficient number of rays per cell must be

ensured. The limitations of the thick-ray approach lie mainly

in the short Rayleigh-range of the Gaussian beamlets it

describes, in the difficulty in implementing it in 3D geome-

tries, and in potential parallelization issues on domain-

decomposed meshes. In both cases, the accuracy of the
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reconstructed laser intensity field compared to realistic laser

beams is limited unless committing significant computa-

tional resources, especially in 3D geometries.

In this paper, we present a novel approach to estimate the

laser intensity distribution in plasma in the Geometrical

Optics framework. The method is implemented in a new LPI

tool called VAMPIRE (VORONOI ADAPTIVE METHOD FOR

PROPAGATION AND INTERACTION OF RADIATED ENERGY). It is

focused on (i) efficiency with respect to 3D geometries, (ii)

accuracy with respect to microscopic reference codes, and (iii)

relaxed dependency on the underlying choice of a mesh. The

GO framework is presented in Sec. II, alongside the standard

rigid-scale estimation method used in most radiative-

hydrodynamic codes. We then present our adaptive-scale

model in Sec. III. It is compared with reference laser intensity

distributions and paraxial solutions of laser propagation.

Comparisons to a standard rigid-scale estimator are also

shown. We then present in Sec. IV an application of the

method to the modeling of CBET. The model is validated in

the linear instability regime against theoretical results, and

convergence properties with respect to the rigid-scale method

are discussed. The model is then validated in the non-linear

(“pump-depletion”) instability regime against paraxial simula-

tions and experimental results.

II. GEOMETRICAL OPTICS AND RIGID-SCALE
ESTIMATION

We briefly recall in this section the Geometrical Optics

trajectory and amplitude transport equations. From the latter,

we present the inverse Bremsstrahlung based rigid-scale esti-

mator used in most radiative hydrodynamic codes to com-

pute the laser intensity.

A. Trajectory and transport equation

In the absence of laser-plasma instabilities and in the

non-relativistic regime, the laser light propagating in plasma

undergoes refraction and diffraction and is absorbed through

the inverse Bremsstrahlung process. The electromagnetic

wave obeys a dispersion relation that limits its propagation

up to a critical density nc¼ �0x
2me/e

2, where �0 is the vac-

uum dielectric constant, x is the wave frequency, me is the

electron mass, and e is the electron charge. The refraction of

the wave is dictated by gradients in the plasma dielectric

function, defined as �ðxÞ ¼ �0ðxÞ þ ı�00ðxÞ ¼ 1� ðne=ncÞ
½x=ðxþ ı�IBÞ�, with ne being the electron density, �IB a col-

lision frequency for the inverse Bremsstrahlung process, and

�0 and �00 the real and imaginary parts of �, respectively.

The starting point of Geometrical Optics is the Helmholtz
equation, obtained from the Maxwell equations assuming

monochromatic laser light of frequency x and either s-

polarized (i.e., E.r�¼ 0, where E is the electric field vector)

or propagating far from the plasma critical density (ne� nc)

r2uðrÞ þ x2

c2
�ðrÞuðrÞ ¼ 0 ; (1)

where u is any component of the wave’s electric or magnetic

field. Far from the plasma critical density, � can be written as

� � 1� ne=ncð1þ ı�IB=xÞ. The GO framework is obtained

by considering an almost-plane wave ansatz (or WKB) for

the field components7

uðrÞ ¼ AðrÞ exp ık0UðrÞ½ �; (2)

where A(r) is an amplitude, U is the eikonal or optical path,

and k0¼x/c is the free space wavenumber. In the GO frame-

work, it is assumed that A and U are real-valued. It is interest-

ing to note that expansion of the method to complex eikonals

is the framework of the aforementioned thick-ray

approach,12,13 while extending both terms to complex values is

the framework of Complex Geometrical Optics.14 Both A and

U are written in the Slowly Varying Envelope Approximation

(SVEA), which validity requires that these quantities vary

slowly over the wavelength c/x. It can be shown that this

approximation holds far from the critical density and for

weakly dissipative media, i.e., for �00 � �0. Inserting the above

ansatz in the Helmholtz equation and equating the various

terms in inverse powers of ðıkÞ, we obtain

ðrUÞ2 ¼ �0ðrÞ ;
2rU:rAþ A�Uþ k0�

00A ¼ 0 ;
�A ¼ 0 ;

(3)

where it was assumed that �00 � �0 in agreement with the

SVEA. The first equation is the eikonal equation and can be

solved using the characteristic technique to obtain the GO

trajectory equations in Hamiltonian form

dr

ds
¼ p ;

dp

ds
¼ c2

2
r�0ðrÞ (4)

with s being a real-valued curvilinear coordinate, r the ray

position, and p its momentum. The second equation in (3)

can be integrated along a ray trajectory to give

AðsÞ ¼ Aðs0Þ=
ffiffiffiffiffi
J
p

exp � k0

2

ðs

s0

�00ds0
" #

; (5)

where J describes the divergence of an infinitesimally thin

ray tube around the ray, thus representing the contribution

from local density gradients to the amplitude of the ray. The

exponential term on the right is simply the inverse

Bremsstrahlung damping.

There are two main limitations to this formulation: it is

divergent at caustics, where J goes to zero, and it does not

describe the field intensity away from the ray, e.g., there is

no radial dependence on A and hence no notion of the ray

width and intensity. Despite these limitations, a power can

be associated with a GO ray by integrating Eq. (5) along an

infinitesimal transverse surface PðsÞ ¼ 1
2

c�0

Ð
SðsÞA

2

ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� neðsÞ=nc

p
da, where S(s) is the cross-section of the

ray tube at s. Integrating Eq. (5) and differentiating with

respect to the ray parameter s yield the power conservation

equation along a ray trajectory

dP

ds
¼ � ne

nc
�IBP : (6)

This equation is integrated along the trajectory of GO

rays to compute inverse Bremsstrahlung absorption.
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B. Rigid-scale inverse-Bremsstrahlung based laser
intensity estimation

Assuming constant plasma parameters33 in a volume V
of a mesh cell and assuming the steady-state, the energy

conservation equation for the electromagnetic energy den-

sity equation can be integrated to obtain the squared electric

field jEj2

�DPabs ¼ ��IB

ne

nc

�0

2
jEj2V (7)

with DPabs being the total power deposited from all rays in

that cell, obtained by integrating Eq. (6) along their

trajectories.

This formulation essentially consists of binning the col-

lisional absorption from GO rays on a grid to infer the laser

intensity. The accuracy and convergence properties of this

method are sensitive to (i) the choice of cell size and (ii) the

statistical number of rays per cell. The first point implies that

the estimator is poorly suited to Lagrangian codes where the

cell size is dictated by hydrodynamics and not laser field gra-

dients. This is especially prominent in the laser-generated

coronal plasma region where only a few cells typically span

from nc to nc/10. The second point implies poor convergence

properties in 3D geometries where the number of cells trans-

verse to the laser propagation is squared from 2D to 3D. The

low number of rays per cell will lead to intensity and wave-

vector fields with holes and large amplitude noise.

In Sec. III, we describe an approach to laser intensity

field estimation that does not rely on a grid. This allows us to

relax the stringent convergence requirements of usual rigid-

scale estimators. Moreover, we show that the method allows

for a more realistic laser intensity distribution in plasma.

III. TESSELATION-BASED INTENSITY ESTIMATION

A. Formulation of the model

We describe in this section the formulation of the propa-

gation model. We discuss the beam sampling method used,

followed by the field intensity reconstruction and the control

of its statistics.

1. Ray distribution

In order to reproduce realistic intensity statistics using

the method described here, it is necessary to introduce a ran-

dom statistical element to the ray distribution. Indeed, for a

beam modeled by equally spaced rays, the estimator we

describe in Sec. III A 2 would behave differently in homoge-

neous and inhomogeneous media. It would produce a smooth

homogeneous field in the former and an inhomogeneous field

in the latter case. We describe here the way in which rays are

distributed in VAMPIRE.

Let us consider two planes PL and PF (for lens and

focal) where the wavefield envelope is known (where the

term envelope refers to the spatially averaged intensity pro-

file of the beam). We randomly discretize PL and PF with N

geometrical optics rays of the same weight Pi by following

the statistics of the beam envelope. As such, the local point

density is a direct measure of the field intensity, and the point

distribution is a statistical sampling of the underlying field

intensity distribution. Rays are randomly connected between

the two planes, and their intersection with the entry of the

simulation box yields the initial position and vectors of the

rays. Constructing beams in this way allows mimicking the

envelope intensity variation in-between the lens and the focal

plane, which arises from the beam diffraction in homoge-

neous media. Note that this artificial construction does not

reproduce the true diffraction physics. The latter would

require the use of Complex Geometrical Optics. Typically

for beams at the National Ignition Facility (NIF), the field is

a flat-top square in PL and an elliptical distribution in PF,

with the form

Iðx; yÞ ¼ I0 exp � x

rx

� �2

þ y

ry

� �2
" #nG

2

8<
:

9=
; ; (8)

where x and y denote the transverse beam coordinates in the

plane of interest, rx and ry are the 1/e beam radius along the

x and y directions, respectively, and nG is the super-Gaussian

order.

The plasma parameters (temperature, density, velocity,

etc.) are described on a hydrodynamical grid that we will

refer to as the coarse grid, since its resolution is dictated by

the Lagrangian dynamics. The rays initialized following the

method described above are propagated in the plasma by

solving Eqs. (4) and (6). After tracing of the rays, the refrac-

tion and power of the wavefield have been sampled along N

discrete curves. Discretizing each curve generates a 3D

weighted point distribution from which we will reconstruct

the underlying intensity field.

The idea of estimating a field density from a set of dis-

crete points is a well-studied problem in Cosmology,15–18

where mass density is reconstructed from observed point-

mass galaxies. A large variety of field estimators are suited

for this problem. Recent studies19 have highlighted the effi-

ciency of order 1 tesselation based methods20 compared to

other approaches. We now present the implementation of

one such estimator to the context of laser intensity estimation

in plasma.

2. Volume intensity estimation from ray positions

We consider the Cartesian coordinate system of normal-

ized base vectors ðex; ey; ezÞ. The plane denoted as Pz consti-

tutes the set of points in ðex; eyÞ at coordinate z. The

intersection of N rays with Pz is denoted asMz. Without the

loss of generality, we assume that the wavefield is not propa-

gating parallel to ez. (If that were the case, the rays may not

intersect with the Pz planes and the estimator would lose

accuracy or fail. Note that in that case, one can choose a dif-

ferent privileged axis for the estimator.) Points in Mz have

powers P obtained from the ray-trace step. Intensity estima-

tion can be achieved by decomposing Pz in a structured and

regular mesh of cells and count the occurrences of points in

each cell, weighted by P. Such rigid-scale intensity estima-

tors (comparable to that described in Sec. II) tend to have
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poor convergence properties since they do not adapt to the

local point density. With the local point density weighted by

the ray powers P being a measure of the local field intensity,

it is natural to discretize the plane into an arbitrary mesh of

cells from the pointsMz such that the cell size is a measure

of the local field density. These cells should cover the entire

plane without overlap (which facilitates energy conservation)

and be convex polygons (allowing well-defined interpolation

within each cell). This concept is the basis of tesselation-
based estimators.

One such estimator is based on the Voronoi plane tessela-

tion, in which cell edges are equidistant to two points and cell

vertices are equidistant to three or more points (see Fig. 1).

These cells are called Voronoi cells. In the case of the

Voronoi estimator, the generator points of the Voronoi dia-

gram are the pointsMz. The field intensity at a given point i
is then estimated as Ii ¼ Pi=AV

i , where AV
i is the area of the

Voronoi cell i. Energy conservation is ensured by imposing

that the 2D integral of the reconstructed intensity field is equal

to the sum of the power values at the N points. A sufficient

condition to ensure this energy conservation is to assume a

constant field intensity in each Voronoi Cell. Since the recon-

structed field is discontinuous at the cell interfaces, this

method is termed order 0 estimator. Order 1 field reconstruc-

tion is obtained by tesselating Mz to form a Delaunay

Triangulation. In this approach, each point is the vertex of

several triangles and no generator point is contained in any

circumcircles of the triangles. Each point i is associated with a

Contiguous Voronoi Cell, which is the union of triangles shar-

ing i as a common vertex. The field intensity at a point i is

then estimated by Ii ¼ Pi=ð3AC
i Þ, where AC

i is the area of the

Contiguous Voronoi Cell i and the factor 3 follows from

energy conservation in 2 dimensions.20 This approach, associ-

ated with a Delaunay interpolation method described below,

is termed Delaunay Triangulation Field Estimation (DTFE).

In our particular case, the DTFE must be corrected for

the angle formed between the local k-vector of the wavefield

and the reference axis chosen to sample the field (here ez).

This can be understood with a simple example: considering a

flat-top beam propagating at an angle h with respect to ez,

the peak reconstructed intensity in any slice of the 3D

volume should be the same. However, the local ray density

in an arbitrary intersecting plane P will be different depend-

ing on the choice of the plane orientation, with the highest

density for a plane orthogonal to the beam propagation. We

compensate for this bias by correcting the intensity estimated

at each point with a factor depending on the local wavefield

angle with respect to the orthogonal axis to plane P

Ii ¼ Pi= 3AC
i cos ðHiÞ

h i
; (9)

where the mean wavefield angle Hi with respect to ez is

defined in the Contiguous Voronoi Cell i (associated with

ray i) as

cos ðHiÞ ¼
Rj2N i

k̂jPj

Rj2N i
Pj

 !
:ez (10)

with k̂j being the propagation vector of ray j normalized to 1

and N i is the set of points comprising the neighbors of i (i.e.,

vertices of the Contiguous Voronoi Cell), including i itself.

Because the Delaunay Triangulation only involves regu-

lar polygons (i.e., triangles in 2 dimensions), it is natural to

describe the sub-grid field distribution by functions of the

form Iðx; yÞ ¼ Axþ Byþ C. Proceeding in that way yields a

reconstructed field that is C0 in Pz. The estimated field at

points Mz is interpolated inside the Delaunay triangles and

sampled onto a high-resolution regular mesh in Pz. The latter

is then binned onto a lower resolution grid that can be used

for purposes of interaction with other beams (see Sec. IV). In

order to avoid spurious effects, we only interpolate within

the convex hull of the beam envelope in Pz. This provides a

sharp cutoff between cells within the envelope and the rest

of the coarse grid. This sharp cutoff is necessary to describe

intensity-weighted k-vector fields and intensity-weighted fre-

quency fields on the edge of the beams.

The estimation procedure is repeated in Nz planes along

the z-axis to obtain a field distribution that covers the 3D

simulation volume. This method is particularly well adapted

to holhraums since the laser light from a given beam never

turns back with respect to the revolution axis of the holh-

raum. Counter-propagating laser light is simply accounted

for by varying the privileged axis or the discretization

direction.

3. Relaxation of the reconstructed statistics

By adapting to the local point density, the DTFE is par-

ticularly sensitive to gradients. As such it is also sensitive to

noise in the point statistics. In our case, the noise originates

from the way the laser beam is randomly discretized from

GO rays (see Sec. III A 1). While this noise can be sup-

pressed by using a very high number of rays per beam, the

smooth reconstructed field would not be representative of a

realistic intensity distribution. Indeed, laser beams in high

power laser systems are transformed by phase plates which

induce fine scale intensity fluctuations called speckles. As

such, it is advantageous to use the sensitivity of the DTFE to

statistical noise to (i) reproduce a fine scale intensity statistic

FIG. 1. Illustration of a Voronoi diagram constructed from a set of generator

points (blue)—in our case, the geometrical optics rays’ positions. Voronoi

cell edges are shown in black and cell vertices in green.

033114-4 Cola€ıtis et al. Phys. Plasmas 25, 033114 (2018)



relevant to the problem and (ii) use a low number of rays per

beam.

In order to control the high-intensity tail of the recon-

structed intensity distribution, we implement an adaptive-

scale relaxation scheme also based on plane tesselation.21

Essentially, the position of the GO raysMz in Pz is relaxed

toward a point distribution MCVT
z that would generate a

Centroidal Voronoi Tesselation (CVT), i.e., a Voronoi dia-

gram for which the generator points are also centers of mass.

Note that the point relaxation only concerns the intensity

estimation step, and the actual position of the ray intersection

with Pz is not changed in terms of wavefield propagation.

This tesselation-based method is different from fixed-kernel

based smoothing algorithms in that it adapts to the local sam-

ple density.

The point relaxation is achieved by minimizing a merit

function (so-called Lloyd iterations)

v ¼ 1

N

XN

i¼1

ajjpi � p�i jj
2 þ ð1� aÞjjpi � p0

i jj
2

 !
(11)

with pi being the current generator site positions, p�i the cur-

rent center of mass positions, and p0
i 2 Mz the original gen-

erator site positions. The a parameter allows us to control the

final distribution between a pure DTFE (a¼ 0) and a pure

CVT (a¼ 1). Convergence of the relaxation iteration is

achieved when subsequent iterations do not change the gen-

erator site positions significantly. For a 62 f0; 1g, the method

is called Penalized-CVT (PCVT) since the relaxed distribu-

tion is not fully a CVT.

The definition of a center of mass p�i for Voronoi Cells

implies that the Voronoi diagram must be bound (i.e., not

branching to infinity). For that purpose, the initial set of

pointsMz is extended to M̂z using virtual rays obtained by

symmetrizing the points on the convex hull ofMz along the

base vectors ð�ex; exÞ and ð�ey; eyÞ (see Fig. 2). The

extended set of generators M̂z is relaxed toward the CVT,

and the resulting point set is cropped to the original convex

hull ofMz. These steps ensure that the beam does not spread

outside of its initial envelope with the Lloyds iterations.

While the PCVT relaxation provides some control on

the intensity statistics, one must note that the field estimated

from an a¼ 1 CVT is not entirely smooth, as illustrated in

Fig. 3. Given an initial distribution [Fig. 3(a)], the corre-

sponding sampled statistical distribution [Fig. 3(d)] recon-

structed by DTFE yields a field with the correct large-scale

variations but with small scale statistics [Fig. 3(b)].

Regularizing the point distribution toward a CVT [Fig. 3(e)]

allows us to reproduce a smoother field which still contains

information on small scale structures [Fig. 3(c)].

4. Scheme parallelization

As mentioned in the introduction, thick-ray based meth-

ods are more challenging to parallelize in 3D geometries on

fully domain-decomposed meshes. Indeed, in domain-

decomposed ray-tracing schemes, many communications

between processes are required when the intensity in a given

mesh cell is no longer a function of the rays in that mesh cell

only. The same issue arises in the DTFE-PCVT reconstruc-

tion technique presented here. However, significant paralleli-

zation opportunities remain: the Geometrical Optics step of

the estimation can be ran in a domain-decomposed mesh,

each beam can be treated separately, and the many Delaunay

Triangulations required for each beam and each Pz can be

ran independently.

B. Comparison to reference solutions

Basic properties of the reconstructed field are now com-

pared with those of reference solutions of laser propagation.

First, the sensitivity of the reconstructed field to the number

of rays and choice of the relaxation parameter is studied. The

parameters considered for the comparison are the beam

envelope intensity, intensity distribution, and speckle size.

For the beam envelope, we consider the particular case of

NIF beams. Second, the propagation model is briefly com-

pared with a paraxial solution for the case of a beam at per-

pendicular incidence on a parabolic density gradient. This is

a relevant situation for laser beams propagating in indirect-

drive ICF.

1. Intensity envelope and statistics

Phaseplates employed in high-power laser systems work

by spatially varying the phase of the laser field at the final

FIG. 2. Generator point distributions used for the PCVT algorithm, for [top]

the initial points and [bottom] the relaxed points. The convex hull ofMz is

shown as red dots. Points in Mz and MCVT
z are shown as empty and red

dots. The virtual points introduced to generate a bound diagram forMz and

MCVT
z are shown as green dots. This example uses 30 generator points in

Mz, and convergence to a¼ 1 was achieved after 3 Lloyds iterations.
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focusing optics, thus making the beam interfere with itself in

the far field. The characteristic spatial scales of the laser spot

in the focal plane of such smoothed beams are dictated by

the size of the phase variations in the phase plate and the full

beam aperture. This process produces beams with well char-

acterized small scale features and reproducible intensity

envelopes. The measured field amplitude for a NIF outer-

beam at the phaseplate is shown in Fig. 4 [left]. The corre-

sponding intensity distribution in the focal plane, shown in

Fig. 4 [right], is obtained by Fourier Transform of the field

amplitude in the near field. The beam envelope parameters

are obtained by fitting the focal plane intensity distribution

to an elliptical profile of the same form as Eq. (8). For a

power of 1 TW, we obtain I0¼ 5.46� 1013 W/cm2, rx

¼ 679.8 lm, ry¼ 952.7 lm, and nG¼ 8.16.

For the DTFE model, the near field ray statistical distri-

bution is set to a flat-top square of 0.38 m in edge length (see

Sec. III A 1 for details on the sampling method). The far-

field distribution is set to a super-Gaussian ellipse [Eq. (8)]

whose parameters are those of the Fourier Transform fitted

solution. The convergence of the DTFE-PCVT estimated

intensity field in the focal plane with the number of rays and

FIG. 3. Illustration of the DTFE-PCVT reconstruction technique for a smooth initial field (a). Generator point positions and reconstructed fields with (b) a¼ 0

and (c) a¼ 1. [Bottom] plots show the generator point positions for the upper right corner of the field, for (d) a¼ 0 and (e) a¼ 1.

FIG. 4. [Left] field amplitude after a typical outer-beam NIF phaseplate (arb. scale). [Right] corresponding intensity distribution in the focal plane (1014 W/

cm2) for a total power of 1 TW.
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the choice of the relaxation parameter is shown in Fig. 5.

Since the sampling process relies on a statistical method, this

convergence is studied over many statistical realizations and

the results are shown for both the average and the standard

deviation. It is found that the DTFE-PCVT method allows us

to accurately reconstruct the large-scale beam parameters.

Asymptotic convergence is found for any value of a from

2500 rays. The error is below 1% for the beam radius and

envelope intensity and up to 10% for the super-Gaussian

order nG, depending on the choice of a. In general, a is found

to only impact significantly the super-Gaussian order, with

higher errors for stronger relaxations. The ray position relax-

ation at high a is more prominent in areas of weak ray den-

sity, e.g., in the wings of the beam, where the super-

Gaussian fit is most sensitive. Although as low as 1000 rays

with a� 0.25 yield average reconstructed parameters with

low errors, the random realization dependency, especially on

nG, becomes significant. As a general rule, it is found that at

least 2000 rays per beam with a� 0.25 are warranted. While

a rigid-scale intensity estimator requires a minimum number

of rays per cells to converge (e.g., 	10 for CBET applica-

tions), this condition is relaxed here: the intensity profile of

the beam is constructed from the rays themselves indepen-

dent of the choice of an underlying grid.

As discussed earlier, the DTFE-PCVT approach produ-

ces small-scale intensity variations due to its sensitivity to

statistical noise. The characteristic scale of these variations

is obtained by fitting a 2D Gaussian distribution to the cross-

correlated intensity field. For NIF beams, the 1/e speckle

radius is 	7 lm and the intensity field follows an exponen-

tial distribution of the form PðIÞ / exp ð�I=hIiÞ=hIi.22,23

The intensity distribution and speckle radius generated by

the DTFE-PCVT are compared with the reference solution in

Fig. 6. In terms of intensity distribution alone, the field

reconstruction is found to bracket the reference solution for

’0:04 and 0.16 rays per transverse cell and a 2 [0, 0.125].

For a typical 200 � 200 � 200 mesh, these parameters are

compatible with the convergence requirements presented

earlier. The slope of the intensity distribution tail is con-

trolled by both a and the number of rays. The higher these

two parameters are, the smoother the reconstructed field is,

with a higher sensitivity to the choice of a. In comparison,

the rigid-scale reconstruction technique requires a large

number of rays to avoid holes in the reconstructed field and

as such produces a distribution centered around the average

intensity with a greatly underestimated tail.

In terms of characteristic scale of the intensity varia-

tions, larger values of a lead to larger intensity structures and

hence larger speckle sizes. Conversely, using more rays

leads to a smaller spatial scale for the intensity variations

and hence a smaller speckle size. Without relaxation, the

modeled speckle size varies from 6 times the reference size

to about 2, using 1000 and 4000 rays/cell, respectively.

These results show that the method does not simultaneously

reproduce the intensity distribution and the speckle size since

the parameter range mentioned above produces speckles of

about 4–5 times the real speckle size.

In practice, numerical grids used in large-scale propaga-

tion models are too coarse to resolve the speckles. The

DTFE-PCVT reproduces the correct intensity distribution

with larger speckles and hence on coarser grids. The over-

estimated speckle radius may be a problem for problems

where the gain per speckle is high. For most applications

related to CBET in indirect-drive ICF, the speckles are not

FIG. 5. Dependence of the reconstructed beam envelope parameters ([Left] average intensity, [middle] beam major radius at 1/e, and [right] supergaussian

exponent) on the relaxation parameter a 2 [0, 1] and the number of rays 2 [25, 8000]. The values are normalized to their reference given by the Paraxial solu-

tion. [Top] figures show the average reconstructed value over 30 realizations, and [bottom] figures show the associated standard deviation.
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thought to play an important role compared to the average

intensity since the gain over a speckle length is small.24 In

contrast, to properly model an instability near its threshold,

accurate speckle modeling is important.25 For most cases of

interest here, it is sufficient to use as low as ’0.04 rays per

transverse cell or 2000 rays (whichever is higher) with a
� 0.25 and large speckles to allow for efficient 3D propaga-

tion of the beam with correct large-scale envelope parame-

ters and satisfying intensity distribution.

2. Propagation in a parabolic density gradient

We now consider the case of inhomogeneous media, in

which the beam undergoes refraction on density gradients.

Simple energy conservation arguments (see Sec. II A) show

that refraction causes the local increase and decrease in the

laser intensity, which must be accounted for by the propaga-

tion model. In the particular case of indirect-drive ICF,

beams typically propagate in a weakly inhomogeneous

plasma in the laser entrance hole and reach the holhraum

wall at an angle. The wall material expands due to the heat-

ing by inverse Bremsstrahlung and can, for simple test-case

purposes, be represented with a parabolic density profile.

The propagation model is now compared with a reference

solution obtained with a Paraxial wave solver.

A NIF-like beam is initialized propagating perpendicu-

lar to a density gradient of parabolic shape on its left side

and constant density on its right side. The density profile is

smoothly matched to vacuum on the input side of the beam.

The laser light propagating in the density gradient refracts

towards the beam center at various rates and creates an inten-

sity enhancement. Comparison of the results obtains with the

DTFE-PCVT and Paraxial approaches is shown in Fig. 7.

The DTFE-PCVT reproduces the beam turning at the correct

rate. This could be expected given that the trajectory equa-

tions of Geometrical Optics contain the refraction compo-

nent of the Paraxial approach. As such, the DTFE-PCVT

also reproduces the intensity enhancement due to the local

field refraction, as seen by comparing intensity profiles at the

output of the simulation box. Note that this test is provided

as verification of the DTFE-PCVT estimation scheme, as

this effect would also be obtained with rigid-scale estimation

with a higher number of rays. However, in regions where

refraction induces beam spraying (e.g., after reflection on the

wall in indirect-drive geometries), the performances of the

latter drop dramatically.

IV. CROSSED-BEAM ENERGY TRANSFER

The VAMPIRE code implements the entire propagation

model described in Sec. III. It allows access to the laser

intensity at any point in the plasma independent of the under-

lying choice of hydrodynamic grid. A direct application of

the propagation model is the implementation of a Crossed

Beam Energy Transfer model to describe the physics of

energy exchange between beams crossing in a plasma. We

now describe the CBET model, its formulation in VAMPIRE,

and its comparison to theoretical and experimental results.

A. Equations of the model

The coupled mode equations for plane waves interacting

in the steady state can be written in the following form:26

@zIn ¼ �ðjn þ CnÞIn;

Cn ¼
X
i6¼n

gni

xi
Ii (12)

with In being the intensity of wave n, jn the inverse

Bremsstrahlung absorption rate for wave n, gni the coupling

coefficient between waves n and i, and Ii the intensity of

wave i. Here, the z subscript refers to the axis of propagation

of wave n. Written in this non-symmetric form, there is a

part of energy that is transferred to the ion acoustic wave

pIAW
ni ¼ xIAW

ni

xnxi
gniInIi. It is useful to transcribe this equation in

terms of ray power in the framework of GO. This is done by

performing a transverse surface integral of In on the cross-

section of the elementary ray tubes associated with each ray

(see Sec. II A) and allow us to swap In for the ray power Pn

in Eq. (12). The CBET coupling coefficient Cn is computed

by summing the independent contributions of all other

beams, with the coupling term27

FIG. 6. [Top] field distribution of a phaseplate smoothed NIF beam as a

function of intensity normalized to the average intensity. The reference solu-

tion PðIÞ / exp ð�I=hIiÞ
hIi is given in black. The rigid-scale inverse

Bremsstrahlung intensity estimation is shown in red for ’ 2 rays/cell (50k

rays). Simulations with a lower number of rays lead to prominent void

regions inside the beam, e.g., part of the plasma that would not be covered

by the laser field. The DTFE reconstructions for 0.04 and 0.16 rays/cell (1k

and 4k rays, respectively) and three values of the relaxation parameters are

shown as green, blue, and magenta lines. [Bottom] normalized characteristic

spatial scale of the intensity variations as a function of relaxation parameter

for the DTFE reconstruction technique.
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with ks;ni ¼ kn � ki being the grating wavevector, ks ¼ jksj;
xs;ni ¼ xn � xi the grating pulsation, u the flow velocity

vector, re the classical electron radius, Z0 the derivative of the

plasma dispersion function,34 vTj the thermal velocity of spe-

cies j, and fni the polarization coefficient for the two interact-

ing waves. For two unpolarized lasers crossing at angle hni,

fni ¼ ð1þ cos2hniÞ=4. For two linearly polarized lasers with

an angle Hni between their polarization vectors at the point of

crossing, fni ¼ cos2Hni. Note that in this formulation, we

assume that the polarization is fixed along the propagation of

the beam. This is valid as long as refraction is small prior to

and inside the CBET region, and the CBET operates in mod-

est gains (G� 1) so that it does not turn the field polarization.

The CBET equations (12) have been implemented in

VAMPIRE (see App. A for the details on the numerical formu-

lation). We now compare the model with the results from

kinetic theory in the linear regime.

B. Comparison to kinetic theory for linear gains

We consider the case of CBET between two beams in the

linear regime. The 3D model results are compared with

reference gains computed with the LIP code28 in 1D and with

the inline model11,35 implemented in HYDRA
29 in 3D. The latter

relies on the same starting equations for CBET (12) but uses

the rigid-scale estimator described in Sec. II. We consider two

3x flat-top beams interacting at 25
 in a homogeneous plasma,

with aligned polarizations and an infinite f-number. The plasma

is either fully ionized C5H12 at ne¼ 0.15nc or fully ionized He

plasma at ne¼ 0.02nc. Temperatures are set to Te¼ 1.8 keV

and Ti¼ 0.3 keV. The plasma extends for 0.6 cm along the

common direction of propagation of the beams. C5H12 plasma

parameters are relevant to conditions presented in Sec. IV C.

The He case is considered for its sharp resonance. The pump

and seed intensities are set to Ipump ¼ 6.7� 1013 W/cm2 and

Iseed ¼ 10�10Ipump, respectively. Inverse Bremsstrahlung

absorption is turned off. In this configuration, there are no 3D

inhomogeneity effects, no finite aperture effects, no finite inter-

action length effects, no laser absorption, and no pump deple-

tion, and thus, the instability operates in the linear regime. The

wavelength detuning between the beams is varied in the [0,

3.5] Å range, and the gain exponent is obtained from the input

and output intensity profiles.

The gain curves obtained in both 3D models are com-

pared with the 1D reference in Figs. 8(a) and 8(b). Both

models reproduce the theoretical linear gains in the two

plasma cases. Comparing the convergence properties of both

approaches is not relevant since this would reduce to a mea-

sure of the model’s ability to produce smooth 1D beams in

3D. However, it is interesting to test the relative accuracy of

the two approaches. A comparison of the average gain error

is shown in Fig. 8(c), where the average error Ê is defined as

FIG. 7. [Top] Intensity field of a phaseplate-smoothed NIF beam propagating in a semi-parabolic density profile, for (a) the paraxial solution and (b) the

DTFE-PCVT solution with 5000 rays and a¼ 0.25. The beam is propagating in the positive z direction. (c) density profile used in the simulation: semi-

parabolic in the x-direction, constant in the y-direction, and constant and smoothly matched to vacuum in the z-direction. The slice in the 3D simulation is

taken in the mid-plane of the y-direction. (d) cumulative intensity in the y-direction as a function of x (CyðxÞ ¼
Ðþ1
�1 Iðx; y; z0Þdy) at the input (dashed line) and

output (solid line) of the simulation box, respectively. The Paraxial Wave Equation solution (denoted PWE) is in black and the DTFE-PCVT solution in red.
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Ê ¼

ð
ðGsim � GthÞdkð

Gthdk
(14)

with Gth(k) being the theoretical linear gain and Gsim(k) the

simulated gain. It is found that the rigid-scale method achieves

with 14 rays/cell the same accuracy as the DTFE method with

0.87 rays/cell and a¼ 1 (the high value of a is chosen to repro-

duce a smoother field, as shown in Sec. III B 1).

In contrast to reduced CBET models based on matrix

exponentials or point-like exchanges between Gaussian beam-

lets,9 ray-based CBET models implementing Eq. (12) do not

conserve energy analytically. We have found that energy con-

servation in our CBET algorithm is mainly dependent on the

local gain compared to the cell size along the beam propagation

direction. For longitudinal resolutions of 100lm, we have

found that the algorithm conserves energy to within 1% of the

total exchanged energy, for total gains up to 4.5. In typical

indirect-drive NIF simulations where interaction lengths are

long but local gains are rather modest, we have observed

energy conservation of the order of 0.7% of the total exchanged

energy when using longitudinal resolutions of up to 130 lm.

C. Comparison to an experiment and paraxial
simulations for CBET in the pump depletion regime

We now compare VAMPIRE with the results obtained dur-

ing the Beam Combiner experiments on NIF30 and with

reference Paraxial simulations conducted with pF3D.31 This

comparison is provided as a validation of the DTFE-PCVT

approach for CBET computation with a linear kinetic

response for the plasma. In a regime where (i) the detailed

intensity statistics does not play a role, (ii) a sufficient num-

ber of rays per cell can be obtained, and (iii) no additional

physics included in VAMPIRE plays a role (Such physics pack-

age includes the frequency shift of the beams by temporal

density fluctuations and detailed beam spectra induced by

Smoothing by Spectral Dispersion. These play a minor role

here and will be described in a following paper.) similar

results would be obtained with a CBET model based on

rigid-scale estimation such as the one presented in Sec. IV B.

The experiment consists of interacting a probe beam

with zero to two resonant pump quads in a uniform plasma

generated with 44 heater beams. The probe beam and pump

quads are detuned by 1 Å in the UV to satisfy resonance for

their crossing angle of 	20
. In addition to its amplification

by resonant pumps, the probe beam is also weakly amplified

by the non-resonant heater beams at various angles. The

CBET occurs in a non-linear regime of the instability since

the pumps lose significant power during the interaction (up

to 	75% of pump depletion at peak power).

The probe beam (B165 of quad Q16B) contains 0.75 kJ

of energy in a 1 ns Gaussian pulse and has a quasi-flat-top

elliptical intensity profile of 862 lm and 617 lm 1/e radii,

corresponding to a maximum intensity of 4.7� 1013 W/cm2.

FIG. 8. Intensity gain exponent as a function of detuning between the interacting beams, for (a) a C5H12 plasma at 0.15 nc and (b) a He plasma at 0.02 nc. Gain

exponents obtained with HYDRA using inverse-bremsstrahlung intensity reconstruction and with the DTFE-based VAMPIRE code are shown as blue and red sym-

bols, respectively. (c) Average CBET gain error scaling with the number of rays for the inverse-Bremsstrahlung intensity reconstruction method. The error

obtained in the DTFE case with 0.87 rays/cell and a¼ 1 is shown as a dashed black line.
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The pump quads have approximately constant powers around

1 TW/beam, corresponding to maximum intensities of

1.3� 1014 and 1.5� 1014 W/cm2 for Q12B and Q42B,

respectively. 2D-axisymmetric hydrodynamic simulations

conducted with HYDRA suggest that the heater interaction

with the C5H12 gas bag produces a quasi-uniform plasma at a

peak probe beam power of ne¼ 0.025nc, Te¼ 1.8 keV,

Ti¼ 0.3 keV, and a radius of 	6 mm. For the purpose of esti-

mating these hydrodynamic conditions, simulations in 2D-

axisymmetric geometries are sufficient since the arrange-

ment of the heater beams is mostly axisymmetric. VAMPIRE

calculations are conducted in the detailed 3D configuration.

Three cases corresponding to three separate experiments are

considered: (i) interaction of the probe with the non-resonant

heater beams only (shot N160905-002), (ii) interaction with

the pump quad Q12B with an average angle of 19.5
 (shot

N160208-002) in addition to the heater beams, and (iii) inter-

action with the two pump quads Q12B and Q42B with aver-

age angles of 19.5
 and 20.7
, respectively (shot N160905-

001), in addition to the heater beams.

The beams after interaction propagate to a Ta witness

plate that converts the deposited energy to kilovolt x-ray

photons detected by an imaging camera. A 3D representation

of the beam path (without the gas bag) and of the plate as

seen from the camera is shown in Fig. 9 [top].

VAMPIRE simulations are conducted assuming homoge-

neous plasma parameters and sampling the measured beam

power profiles every 100 ps for each shot. We model each

beam with 2000 rays and a¼ 0 on a 150 � 150 � 150 mesh

spanning a domain of 0.6 � 0.6 � 0.6 cm. The laser beams

after the interaction region are propagated onto the witness

plate, and we reproduce synthetically the plate orientation and

viewing angle in 3D. The laser intensity on the plate is recon-

structed using the same DTFE technique as presented in Sec.

III. A comparison of the simulated post-CBET laser intensity

profiles on the witness plate with the measured X-ray emis-

sion in the experiment is shown in Fig. 9 [middle, bottom].

We have assumed for simplicity a linear dependency between

X-ray emission and laser intensity, which allows for a qualita-

tive comparison of the spot shapes and positions.

FIG. 9. [Top] Representation of the beam trajectories in vacuum in the Beam Combiner experimental configuration. The witness plate is shown in the brown

and the viewing angle is that of the imaging camera. [Middle] Time-integrated X-ray images of the witness plate, calibrated to have the same brightness for

the calibration spots.30 Plots courtesy of R. Kirkwood. [Bottom] Reconstructed intensity profiles on the witness plate as viewed from the imaging camera port.

Data are from VAMPIRE simulations taken at the peak power of the probe beam. The plate is positioned at a distance of DTCC ¼ 1.2 cm from the Target Chamber

Center (TCC) along the bisector of the interacting probe beam and Q12B pump quad, that is, fbisector ¼ 38.5
 and /bisector ¼ 246.9
 (f is the polar angle, zero at

the chamber north pole, and / is the azimuthal angle). The plate normal is oriented along fnormal ¼ 32
 and /normal ¼ 258
, and the plate is viewed from a port

located at fcamera ¼ 90
, /camera ¼ 78
.
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There is qualitative agreement between the spots’ rela-

tive positions and sizes between the experiments and simula-

tions. Notably, the simulations reproduce the seed

non-uniform intensity profile in the 1-pump quad case, which

is due to the geometry of the interaction. The increased spot

homogeneity observed in the 2-pump quad case is also repro-

duced by the simulations. Finally, the experiments show

preferential depletion of the pumps on the two bottom beams

in Q12B, which is also reproduced in the simulations.

Additional simulations have shown that this effect is due to

the polarization scheme for the NIF beams, which is

accounted for in the code (see Sec. IV A).

Significant discrepancies are observed in the shape of

the pump quads on the plate. The four beams in Q12B appear

to be separated in both experiments, while the simulation

produces two bands, formed by pairs of beams close

together. Interestingly, the Q42B beams produce the two

band pattern in the 2-pump quad experiment, while the simu-

lation predicts a more homogeneous spot. Additional simula-

tions with small variations in the plate position in space

show that the spot shape is not sensitive to plate positioning

errors, while the relative position of the spots is rather sensi-

tive. Better agreement in that respect is observed in the 2-

pump quad case with a distance from TCC increased by

500 lm. The fact that the pump beam spots does not change

significantly with small variations in the plate position is

related to the large Rayleigh range of the NIF beams.

Given the discrepancy observed in pump quad shapes on

the witness plate, it is interesting to compare VAMPIRE results

with Paraxial simulations that include more laser

propagation physics. Model results are compared with

numerical computations of the Beam Combiner experiments

made with pF3D. The code uses the NIF phase plate data (see

Fig. 4), allowing comprehensive modeling of the laser speck-

les and envelope in the far field, including refraction and dif-

fraction. The paraxial approach describes the ion acoustic

wave response of the plasma, leading to the CBET and back-

scatter from Stimulated Brillouin Scattering. Comparisons of

the seed beam and pump beam spot shapes after the interac-

tion regions between the VAMPIRE and pF3D are shown in Fig.

10. The intensity profiles in both cases have been spatially

smoothed using a 2D Gaussian kernel of 75 lm standard

deviation to allow for a comparison of the laser intensity

envelope. Both approaches reproduce the deviation of the

probe beam intensity field barycenter, as is seen in the exper-

imental data. Both approaches are also consistent in the

shape of the pump beams, with a top-down asymmetry due

to beam polarizations and two ellipsoid shapes, in contrast to

the experimental result.

Finally, we show in Fig. 11 a summary of the time-

integrated probe beam amplification as a function of the

number of pump quads. Note that the pF3D simulation does

not account for the contribution from the heater beams since

their angle with the probe beam is too large to remain within

the paraxial approximation. For the same reason, the two

pump quad case is not simulated with pF3D. There is a good

overall agreement between the experimental data, VAMPIRE,

and pF3D. While the predicted beam amplification in the two

pump-quad case is slightly underestimated by VAMPIRE, the

discrepancy is reduced when considering inhomogeneity

FIG. 10. Intensity slices in a plane orthogonal to the bisector between the seed beam and Q12B in the 1-pump quad case, at 1.2 cm from TCC. [Top] probe

beam profiles and [bottom] pump beam profiles, from [left] pF3D simulations and [right] VAMPIRE simulations. Spot profiles have been normalized to contain

the same power.
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from the gas bag target. Indeed, while the center of the gas-

bag is expected to be rather homogeneous, the laser-target

interaction produces a shock traveling toward the target cen-

ter. HYDRA and VAMPIRE simulations suggest that at the time

of interaction, the beams may clip the higher-density region

associated with the shock, thus producing increased amounts

of CBET. Finally, it is interesting to note that probe beam

amplification in the absence of pumps is observed in both

simulation and experiment, showing that non-resonant inter-

actions between the probe and the heater beams also play a

role.

V. CONCLUSIONS

We have developed a new ray-based laser intensity esti-

mation method for plasmas that is not dependent on the

choice of an underlying grid. In contrast to usual rigid-scale

estimators that use a fixed grid to bin the contributions from

GO rays, we use the ray positions themselves to estimate the

local field density. This approach is particularly efficient in

3D geometries, where traditional rigid-scale estimators have

poor convergence properties. The field is estimated using a

modified Delaunay Triangulation tesselation estimator. This

method reproduces correctly the large-scale beam parame-

ters, including minor and major axes for elliptical beams,

average intensity, and super-Gaussian order. Although the

field estimator is sensitive to noise in the point distribution,

laser beams smoothed by phaseplates also present some

degree of intensity statistics which is comparable to what the

estimator produces. This allows us to keep the number of

rays low, typically 2000 per beam, thus enhancing the

method efficiency while describing a realistic laser intensity

field. The speckle size remains large compared to real

speckle, which may be an issue when considering instabil-

ities with a significant gain per speckle length. In order to

add control on the intensity distribution, a relaxation scheme

based on Penalized Centroidal Voronoi Tesselation was

implemented, allowing us to change the modeled speckle

size and slope of the tail of the intensity distribution.

A Crossed Beam Energy Transfer model has been

implemented in this framework. It is based on the resolution

of the steady-state plane wave equations for CBET. The

effect of individual beam polarization is accounted for in the

limit of weak refraction and moderate gains. The numerical

implementation allows us to account for pump depletion in

the case of co-propagating beams. The code has been vali-

dated against kinetic theory for linear gains. Comparison in a

pump depletion regime has shown good agreement with

experimental results and paraxial simulations.

The code has been implemented with the detailed 3D

geometry of the NIF beams, and laser propagation is com-

puted along 3D plasma gradients. This makes it a flexible

tool for future studies on 3D hydrodynamic profiles, which

are becoming more and more computationally accessible.

Since the CBET is computed between all NIF beams, the

code can be used to extract spatial gain rates detailing the

contribution of each beam. This can in turn be used by para-

xial codes as a source term to account for the contributions

of beams at high angles. Furthermore, the amplification con-

tribution from all quads to SBS and SRS backscattered light

can be computed. This will allow us in the future to compute

realistic SBS and SRS backscatter maps on the NIF chamber

walls and reproduce synthetic FABS diagnostics. A TPD

module is also under development, to enhance the predictive

capabilities for hot electron production and propagation in

the holhraum.
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APPENDIX: CBET NUMERICAL SCHEME

The implementation of the GO algorithm in the code

described in this paper uses hydrodynamic quantities defined

at mesh nodes and tri-linearly interpolated inside each 3D

cell. Following this scheme, the CBET coupling coefficients

Cn are also computed at the mesh nodes and tri-linearly inter-

polated within each cell. This requires us to sample the laser

field related quantities (k-vectors, frequency, and intensity)

at the nodes. This is done in the same way for the 5 quanti-

ties of interest (kx, ky, kz, x, and I): (i) the beam parameters

known at theMz positions are sampled on a high resolution

grid using bi-linear interpolation within each Delaunay trian-

gle, (ii) the parameters are then binned (using an average sta-

tistics) onto 2D cells which barycenters coincide with the

hydrodynamic mesh. Similar to the scheme detailed in Sec.

III, a sharp cutoff is used such that cells outside the convex

hull of each beam are associated with a null value. Note that

instead of relying on a grid common to all beams to compute

a transfer coefficient summed over all beams, we could use

directly the beam point distributions to compute beam by

FIG. 11. Time-integrated probe beam amplification as a function of the

number of pump quads. Experimental results with uncertainties are shown

as a blue shaded region. Simulations with VAMPIRE are shown as green

squares for the homogeneous plasma case and red triangles for the inhomo-

geneous case. The pF3D simulation is indicated with a magenta circle. The

estimated contribution to beam damping from inverse Bremsstrahlung

absorption, i.e., the beam amplification in the absence of CBET, is indicated

as a dashed line.
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beam coupling coefficients at ray locations. This would

likely increase the algorithm efficiency and may be consid-

ered in the future.

The system of equations on the N wavefields (12) can be

solved analytically using matrix exponentials in the absence

of refraction. The situation is more complex in the presence

of laser refraction: the laser intensity field at step zþ dz con-

tains a component that originates from the convergence or

divergence of ray tubes and the contribution of adjacent rays,

and the z coordinate in Eq. (12) becomes curvilinear. For

simplicity, we solve Eq. (12) with an iterating scheme

between planes Pz and Pzþdz at coordinates z and zþ dz (see

Fig. 12):

1. the laser intensity of the N fields is computed fromMz,

2. rays are traced from z to zþ dz accounting for inverse

Bremsstrahlung absorption [jn in (12)] and half of the

contribution from CBET (Cn6¼0 for nodes at z and Cn¼ 0

for nodes at zþ dz),

3. the laser intensity is computed in Pzþdz from Mzþdz and

the ray powers, thus accounting for absorption, refraction,

and part of the CBET,

4. Cn is computed at the mesh nodes in Pzþdz using the esti-

mated intensity in the previous step,

5. knowing the values of Cn and jn at the nodes of both Pz

and Pzþdz, Eq. (12) is re-integrated along ray trajectories,

6. the intensity field in Pzþdz is recomputed.

The last two steps can be re-iterated to ensure numerical

convergence, which is typically observed after one iteration

for the modest gains of interest in our cases (G� 1 per dz

unit length). Numerical integration of Eq. (12) is conducted

using the LSODA
32 integrator, which switches automatically

between stiff and non-stiff methods on the fly. This has been

observed as useful in cases of sharp spatial resonances in C.
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